Patents by Inventor Gareth G. Hougham

Gareth G. Hougham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9410261
    Abstract: A negative electrophoretic photoresist is applied over a plurality of protruding disposable template portions on a substrate. A silo structure is placed on planar portions of the negative electrophoretic photoresist that laterally surround the plurality of protruding disposable template portions. The negative electrophoretic photoresist is lithographically exposed employing the silo structure and a first lithographic mask, which includes a transparent substrate with isolated opaque patterns thereupon. After removal of the silo structure, the negative electrophoretic photoresist is lithographically exposed employing a second lithographic mask, which includes a pattern of transparent areas overlying the planar portions of the negative electrophoretic photoresist less the areas for bases of metal structure to be subsequently formed by electroplating. The negative electrophoretic photoresist is developed to form cavities therein, and metal structures are formed by electroplating within the cavities.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gareth G. Hougham, Gerard McVicker, Anna Pratt
  • Patent number: 9340892
    Abstract: A negative electrophoretic photoresist is applied over a plurality of protruding disposable template portions on a substrate. A silo structure is placed on planar portions of the negative electrophoretic photoresist that laterally surround the plurality of protruding disposable template portions. The negative electrophoretic photoresist is lithographically exposed employing the silo structure and a first lithographic mask, which includes a transparent substrate with isolated opaque patterns thereupon. After removal of the silo structure, the negative electrophoretic photoresist is lithographically exposed employing a second lithographic mask, which includes a pattern of transparent areas overlying the planar portions of the negative electrophoretic photoresist less the areas for bases of metal structure to be subsequently formed by electroplating. The negative electrophoretic photoresist is developed to form cavities therein, and metal structures are formed by electroplating within the cavities.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: May 17, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gareth G. Hougham, Gerard McVicker, Anna Pratt
  • Publication number: 20150060266
    Abstract: A negative electrophoretic photoresist is applied over a plurality of protruding disposable template portions on a substrate. A silo structure is placed on planar portions of the negative electrophoretic photoresist that laterally surround the plurality of protruding disposable template portions. The negative electrophoretic photoresist is lithographically exposed employing the silo structure and a first lithographic mask, which includes a transparent substrate with isolated opaque patterns thereupon. After removal of the silo structure, the negative electrophoretic photoresist is lithographically exposed employing a second lithographic mask, which includes a pattern of transparent areas overlying the planar portions of the negative electrophoretic photoresist less the areas for bases of metal structure to be subsequently formed by electroplating. The negative electrophoretic photoresist is developed to form cavities therein, and metal structures are formed by electroplating within the cavities.
    Type: Application
    Filed: October 30, 2014
    Publication date: March 5, 2015
    Inventors: Gareth G. Hougham, Gerard McVicker, Anna Pratt
  • Patent number: 8910853
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8846191
    Abstract: Bilayer platelet fillers are employed to compensate for a positive coefficient of thermal expansion (CTE) of an embedding polymeric material, or even to provide a composite structure having a negative CTE to eliminate or alleviate thermomechanical stress and/or delamination during thermal cycling. A bilayer platelet includes two joined layers having different CTEs. The CTE mismatch induces bending of the bilayer platelets, thereby causing cavities at temperatures lower than the joining temperature at which the bilayers are joined. The decrease in the volume of the polymeric material and the bilayer platelets at low temperatures is compensated by an accompanying increase in the volume of the cavities so that the composite structure has a temperature independent volume, a low net CTE, or even a negative CTE.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Xiao H. Liu
  • Publication number: 20140242524
    Abstract: A negative electrophoretic photoresist is applied over a plurality of protruding disposable template portions on a substrate. A silo structure is placed on planar portions of the negative electrophoretic photoresist that laterally surround the plurality of protruding disposable template portions. The negative electrophoretic photoresist is lithographically exposed employing the silo structure and a first lithographic mask, which includes a transparent substrate with isolated opaque patterns thereupon. After removal of the silo structure, the negative electrophoretic photoresist is lithographically exposed employing a second lithographic mask, which includes a pattern of transparent areas overlying the planar portions of the negative electrophoretic photoresist less the areas for bases of metal structure to be subsequently formed by electroplating. The negative electrophoretic photoresist is developed to form cavities therein, and metal structures are formed by electroplating within the cavities.
    Type: Application
    Filed: August 13, 2012
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gareth G. Hougham, Gerard McVicker, Anna Pratt
  • Patent number: 8752284
    Abstract: A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Patent number: 8624152
    Abstract: Methods for the fabrication of negative coefficient thermal expansion engineered elements, and particularly, wherein such elements provide for fillers possessing a low or even potentially zero coefficient thermal expansion and which are employable as fillers for polymers possessing high coefficients of thermal expansion. Further, disclosed are novel structures, which are obtained by the inventive methods.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Vijayeshwar D. Khanna, Xiao Hu Liu, Gerard McVicker
  • Publication number: 20130284495
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8505200
    Abstract: A method of producing a module arrangement which includes a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Patent number: 8493746
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S. N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8479388
    Abstract: A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Patent number: 8449971
    Abstract: Bilayer platelet fillers are employed to compensate for a positive coefficient of thermal expansion (CTE) of an embedding polymeric material, or even to provide a composite structure having a negative CTE to eliminate or alleviate thermomechanical stress and/or delamination during thermal cycling. A bilayer platelet includes two joined layers having different CTEs. The CTE mismatch induces bending of the bilayer platelets, thereby causing cavities at temperatures lower than the joining temperature at which the bilayers are joined. The decrease in the volume of the polymeric material and the bilayer platelets at low temperatures is compensated by an accompanying increase in the volume of the cavities so that the composite structure has a temperature independent volume, a low net CTE, or even a negative CTE.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Xiao H. Liu
  • Patent number: 8341834
    Abstract: A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane. A plurality of slots are formed in the sidewall of said interposer for the venting of gases and pressure therethrough.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Patent number: 8316540
    Abstract: A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and mounting at least one interposer on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. At least one sidewall of the interposer is slitted to facilitate the venting of gases and pressure therethrough. The method includes arranging a plurality of electrically-conductive elements about the surface of the at least one hemi-toroidal interposer and extending them radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Publication number: 20120259072
    Abstract: Bilayer platelet fillers are employed to compensate for a positive coefficient of thermal expansion (CTE) of an embedding polymeric material, or even to provide a composite structure having a negative CTE to eliminate or alleviate thermomechanical stress and/or delamination during thermal cycling. A bilayer platelet includes two joined layers having different CTEs. The CTE mismatch induces bending of the bilayer platelets, thereby causing cavities at temperatures lower than the joining temperature at which the bilayers are joined. The decrease in the volume of the polymeric material and the bilayer platelets at low temperatures is compensated by an accompanying increase in the volume of the cavities so that the composite structure has a temperature independent volume, a low net CTE, or even a negative CTE.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gareth G. Hougham, Xiao H. Liu
  • Patent number: 8278745
    Abstract: A package design is provided where a chip module is connected to a printed circuit board (PCB) via a land grid array (LGA) on the top surface of the PCB, and where a power supply is connected to the PCB via a second LGA on the bottom surface of the PCB. The stack of the chip module, power supply, and LGA is held in place and compressed with actuation hardware forming an adjustable frame. The package allows field replacibility of either the module, or the PS, and provides the shortest possible wiring distance from the PS to the module leading to higher performance.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: October 2, 2012
    Assignee: International Business Machines Corporation
    Inventors: Paul W. Coteus, Shawn A. Hall, Gareth G. Hougham, Alphonso P. Lanzetta, Rick A. Rand
  • Patent number: 8191245
    Abstract: A land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane. Provided is also a method of producing the land grid array interposer structure.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas
  • Publication number: 20120121906
    Abstract: Methods for the fabrication of negative coefficient thermal expansion engineered elements, and particularly, wherein such elements provide for fillers possessing a low or even potentially zero coefficient thermal expansion and which are employable as fillers for polymers possessing high coefficients of thermal expansion. Further, disclosed are novel structures, which are obtained by the inventive methods.
    Type: Application
    Filed: January 24, 2012
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gareth G. Hougham, Vijayeshwar D. Khanna, Xiao Hu Liu, Gerard McVicker
  • Patent number: 8171630
    Abstract: A method of producing a land grid array (LGA) interposer structure includes mounting at least one interposer on a first surface of an electrically insulating carrier plane. The interposer selectively having a hemi-toroidal, conical, dome-shaped conic section, generally cylindrical or hemi-spherical configuration in transverse cross-section and being constituted of a dielectric elastomeric material. The method includes positioning a plurality of electrically-conductive elements about the surface of the hemi-toroidal interposer that extend radially inwardly and downwardly from an uppermost end thereof. The method further includes mounting said at least one component comprising at least one hemi-toroidal interposer mounted on said opposite side of said carrier plane.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 8, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Brian S. Beaman, Evan G. Colgan, Paul W. Coteus, Stefano S. Oggioni, Enrique Vargas