Patents by Inventor Gary E. Peck

Gary E. Peck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9281537
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 8, 2016
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20130312255
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 28, 2013
    Applicant: Johns Hopkins Univesity
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 8574767
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 5, 2013
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20110123852
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: May 18, 2010
    Publication date: May 26, 2011
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20030223802
    Abstract: An implement for use in prison environments which is not reformable into a weapon and including at least a body having a proximal handle portion and a distal operational portion is provided. The body is non-sharpenable and fabricated from a non-meltable material, and has frangible means for limiting body strength by facilitating structural failure of the body upon application thereto of a force exceeding a predetermined magnitude.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 4, 2003
    Inventors: Paul J. Biermann, Gary E. Peck