Patents by Inventor Gary E. Ruland

Gary E. Ruland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210269937
    Abstract: The present disclosure generally relates to silicon carbide crystals which may be used in optical applications, and to methods for producing the same. In one form, a composition includes an aluminum doped silicon carbide crystal having residual nitrogen and boron impurities. The concentration of aluminum in the silicon carbide crystal is greater than the combined concentrations of nitrogen and boron in the silicon carbide crystal, and the silicon carbide crystal includes an optical absorption coefficient of less than about 0.4 cm?1 at a wavelength in a range between about 400 nm to about 800 nm.
    Type: Application
    Filed: September 23, 2020
    Publication date: September 2, 2021
    Inventors: Ilya Zwieback, Varatharajan Rengarajan, Andrew N. Souzis, Gary E. Ruland
  • Patent number: 10793972
    Abstract: A physical vapor transport (PVT) apparatus suitable for growing SiC boules comprises a crystal growth chamber (with a defined central vertical axis), a sealed crucible containing sublimation source material and including a seed fixture disposed in an offset position with respect to the central vertical axis of the apparatus, and a heat source disposed to surround the crystal growth chamber. The heat source is configured to raise the temperature within the sealed crucible such that the source material vaporizes and deposits on the seed wafer. The offset position of the seed fixture creates a radial temperature gradient across an exposed surface of the seed as the crystal boule is grown.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 6, 2020
    Assignee: II-VI Delaware, Inc.
    Inventors: Xueping Xu, Avinash Gupta, Mark Ramm, Ilya Zwieback, Varatharajan Rengarajan, Gary E. Ruland
  • Patent number: 9388509
    Abstract: In a method of forming polycrystalline SiC grain material, low-density, gas-permeable and vapor-permeable bulk carbon is positioned at a first location inside of a graphite crucible and a mixture of elemental silicon and elemental carbon is positioned at a second location inside of the graphite crucible. Thereafter, the mixture and the bulk carbon are heated to a first temperature below the melting point of the elemental Si to remove adsorbed gas, moisture and/or volatiles from the mixture and the bulk carbon. Next, the mixture and the bulk carbon are heated to a second temperature that causes the elemental Si and the elemental C to react forming as-synthesized SiC inside of the crucible. The as-synthesized SiC and the bulk carbon are then heated in a way to cause the as-synthesized SiC to sublime and produce vapors that migrate into, condense on and react with the bulk carbon forming polycrystalline SiC material.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: July 12, 2016
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Avinash K. Gupta, Ping Wu, Donovan L. Barrett, Gary E. Ruland, Thomas E. Anderson
  • Patent number: 9322110
    Abstract: A sublimation grown SiC single crystal includes vanadium dopant incorporated into the SiC single crystal structure via introduction of a gaseous vanadium compound into a growth environment of the SiC single crystal during growth of the SiC single crystal.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 26, 2016
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Avinash K. Gupta, Michael C. Nolan, Bryan K. Brouhard, Gary E. Ruland
  • Patent number: 9090989
    Abstract: In a crystal growth apparatus and method, polycrystalline source material and a seed crystal are introduced into a growth ambient comprised of a growth crucible disposed inside of a furnace chamber. In the presence of a first sublimation growth pressure, a single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a first gas that includes a reactive component that reacts with and removes donor and/or acceptor background impurities from the growth ambient during said sublimation growth. Then, in the presence of a second sublimation growth pressure, the single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a second gas that includes dopant vapors, but which does not include the reactive component.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 28, 2015
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Ping Wu, Varatharajan Rengarajan, Avinash K. Gupta, Thomas E. Anderson, Gary E. Ruland, Andrew E. Souzis, Xueping Xu
  • Publication number: 20140234194
    Abstract: A sublimation grown SiC single crystal includes vanadium dopant incorporated into the SiC single crystal structure via introduction of a gaseous vanadium compound into a growth environment of the SiC single crystal during growth of the SiC single crystal.
    Type: Application
    Filed: October 28, 2013
    Publication date: August 21, 2014
    Applicant: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Avinash K. Gupta, Michael C. Nolan, Bryan K. Brouhard, Gary E. Ruland
  • Patent number: 8741413
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 3, 2014
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu
  • Publication number: 20130320275
    Abstract: In a crystal growth apparatus and method, polycrystalline source material and a seed crystal are introduced into a growth ambient comprised of a growth crucible disposed inside of a furnace chamber. In the presence of a first sublimation growth pressure, a single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a first gas that includes a reactive component that reacts with and removes donor and/or acceptor background impurities from the growth ambient during said sublimation growth. Then, in the presence of a second sublimation growth pressure, the single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a second gas that includes dopant vapors, but which does not include the reactive component.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Inventors: Ilya Zwieback, Ping Wu, Varatharajan Rengarajan, Avinash K. Gupta, Thomas E. Anderson, Gary E. Ruland, Andrew E. Souzis, Xueping Xu
  • Publication number: 20130309496
    Abstract: In a method of forming polycrystalline SiC grain material, low-density, gas-permeable and vapor-permeable bulk carbon is positioned at a first location inside of a graphite crucible and a mixture of elemental silicon and elemental carbon is positioned at a second location inside of the graphite crucible. Thereafter, the mixture and the bulk carbon are heated to a first temperature below the melting point of the elemental Si to remove adsorbed gas, moisture and/or volatiles from the mixture and the bulk carbon. Next, the mixture and the bulk carbon are heated to a second temperature that causes the elemental Si and the elemental C to react forming as-synthesized SiC inside of the crucible. The as-synthesized SiC and the bulk carbon are then heated in a way to cause the as-synthesized SiC to sublime and produce vapors that migrate into, condense on and react with the bulk carbon forming polycrystalline SiC material.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: II-VI Incorporated
    Inventors: Ilya Zwieback, Avinash K. Gupta, Ping Wu, Donovan L. Barrett, Gary E. Ruland, Thomas E. Anderson
  • Publication number: 20130280466
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 24, 2013
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu
  • Patent number: 5912257
    Abstract: Styryl dyes and compositions which exhibit superior two-photon absorption cross-sections and are useful in two-photon pumped cavity lasing, two-photon pumped upconversion lasing, optical power limiting, optical power stabilization, optical signal reshaping, and infrared beam detection and indication are disclosed. Also disclosed are multiphasic nanostructured composites which include a glass having pores, an optically active coating material on the pore surface, and a polymeric material in the pores. These composites are useful in producing multifunctional optical materials, such as broadly tunable lasers. Methods for killing cells and viruses using a photosensitizer and a two-photon upconverting dye are also described. These methods are especially useful to kill cells and viruses in biological materials, such as in photodynamic therapy of tumors and cancers or blood purification protocols.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: June 15, 1999
    Assignee: The Research Foundation of State university of New York
    Inventors: Paras N. Prasad, Jayant D. Bhawalkar, Guang S. He, Chan F. Zhao, Raz Gvishi, Gary E. Ruland, Jaroslaw Zieba, Ping Chin Cheng, Shan Jen Pan
  • Patent number: RE46315
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 21, 2017
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu
  • Patent number: RE48378
    Abstract: In a crystal growth apparatus and method, polycrystalline source material and a seed crystal are introduced into a growth ambient comprised of a growth crucible disposed inside of a furnace chamber. In the presence of a first sublimation growth pressure, a single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a first gas that includes a reactive component that reacts with and removes donor and/or acceptor background impurities from the growth ambient during said sublimation growth. Then, in the presence of a second sublimation growth pressure, the single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a second gas that includes dopant vapors, but which does not include the reactive component.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 5, 2021
    Assignee: II-VI Delaware, Inc.
    Inventors: Ilya Zwieback, Ping Wu, Varatharajan Rengarajan, Avinash K. Gupta, Thomas E. Anderson, Gary E. Ruland, Andrew E. Souzis, Xueping Xu