Patents by Inventor Gary H. Loechelt

Gary H. Loechelt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9818831
    Abstract: An electronic device can include a transistor having a drain region, a source region, a dielectric layer, and a gate electrode. The dielectric layer can have a first portion and a second portion, wherein the first portion is relatively thicker and closer to the drain region; the second portion is relatively thinner and closer to the source region. The gate electrode of the transistor can overlie the first and second portions of the dielectric layer. In another aspect, an electronic device can be formed using two different dielectric layers having different thicknesses. A gate electrode within the electronic device can be formed over portions of the two different dielectric layers. The process can eliminate masking and doping steps that may be otherwise used to keep the drain dopant concentration closer to the concentration as originally formed.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 14, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTREIS, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Publication number: 20170222555
    Abstract: A circuit can include a pair of switching devices that are coupled to an intermediate switching node and another pair of switching devices that are coupled to an output node. The circuit can further include a magnetic element that can help to store energy when the circuit transitions from a low state to a high state and release the energy when the circuit transitions from a high state to a low state. The circuit can include a control device to allow synchronous operation between the different pairs of switching devices. The magnetic element can help to reduce voltage swings at the output switching node. Thus, switching devices within each of the pairs can be optimized to allow for better performance of the circuit.
    Type: Application
    Filed: May 16, 2016
    Publication date: August 3, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gary H. LOECHELT
  • Patent number: 9680381
    Abstract: A circuit can include a switching element, a charge storage element, a first rectifying element, and a second rectifying element. A current-carrying electrode of the switching element and a terminal of the charge storage element are coupled to each other. The other terminal of the charge storage element, an anode of the first rectifying element, and a cathode of the second rectifying element are coupled to a floating node. A cathode of the first rectifying element is coupled to an input terminal, and an anode of the second rectifying element is coupled to a reference node. In a particular embodiment, the circuit can be part of a power converter. The charge storage element can help to capture charge during a switching operation and release the captured charge during a subsequent switching operation. The charge storage element can help the circuit to operate more efficiently.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: June 13, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 9620585
    Abstract: At least some illustrative device embodiments include a highly-doped n-type semiconductor substrate having a first epitaxial layer of a lightly-doped n-type semiconductor; and a second epitaxial layer of a lightly-doped p-type semiconductor to form a vertical diode with the first epitaxial layer. A termination structure near the outer edges of the device includes a termination well in the second epitaxial layer, the termination well being a moderately-doped n-type semiconductor so as to form a horizontal diode with the second epitaxial layer. The structure further includes an electric field barrier. The electric field barrier includes at least one vertical trench extending through the termination well into the first epitaxial layer and exposing a sidewall region. The sidewall region is doped via the sidewalls to be a moderately-doped p-type semiconductor. Also provided are sidewall layers of a moderately-doped n-type semiconductor, the sidewalls electrically coupling the termination well to the substrate.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: April 11, 2017
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Publication number: 20170062610
    Abstract: An electronic device can include a semiconductor layer having a primary surface, a drift region adjacent to the primary surface, a drain region adjacent to the drift region and extending deeper into the semiconductor layer as compared to the drift region, a resurf region spaced apart from the primary surface, an insulating layer overlying the drain region, and a contact extending through the insulating layer to the drain region. In an embodiment, the drain region can include a sinker region that allows a bulk breakdown to the resurf region to occur during an overvoltage event where the bulk breakdown occurs outside of the drift region, and in a particular embodiment, away from a shallow trench isolation structure or other sensitive structure.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 2, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Moshe AGAM, Ladislav SELIGA, Thierry Coffi Herve YAO, Jaroslav PJENCÁK, Gary H. LOECHELT
  • Publication number: 20170062410
    Abstract: A circuit can include a transistor, a capacitive element, and a rectifying element. The rectifying element and the capacitive element can be serially connected and coupled to the current-carrying terminals of the transistor. An electronic device may include part of the circuit. The electronic device can include a diode that includes a horizontally-oriented semiconductor member and a vertically-oriented semiconductor member having different conductivity types. The ends of the horizontally-oriented semiconductor and vertically-oriented semiconductor members physically contact each other. A process of forming an electronic device can include forming a semiconductor layer and forming a second semiconductor member. In a finished device, a diode includes a junction between dopants of first and second conductivity types within the semiconductor layer, within the semiconductor member, or at an interface between the semiconductor layer and the semiconductor member.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventor: Gary H. LOECHELT
  • Patent number: 9520390
    Abstract: An electronic device can include a capacitor structure. In an embodiment, the electronic device can include a buried conductive region, a semiconductor layer having a primary surface, a horizontally-oriented doped region adjacent to the primary surface, an insulating layer overlying the horizontally-oriented doped region, and a conductive electrode overlying the insulating layer. The capacitor structure can include a first capacitor electrode including a vertical conductive region electrically connected to the horizontally-oriented doped region and the buried conductive region. The capacitor structure can further include a capacitor dielectric layer and a second capacitor electrode within a trench. The capacitor structure can be spaced apart from the conductive electrode.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 13, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 9490358
    Abstract: An electronic device can include a buried conductive region and a semiconductor layer over the buried conductive region. The electronic device can further include a horizontally-oriented doped region and a vertical conductive region, wherein the vertical conductive region is electrically connected to the horizontally-oriented doped region and the buried conductive region. The electronic device can still further include an insulating layer overlying the horizontally-oriented doped region, and a first conductive electrode overlying the insulating layer and the horizontally-oriented doped region, wherein a portion of the vertical conductive region does not underlie the first conductive electrode. The electronic device can include a Schottky contact that allows for a Schottky diode to be connected in parallel with a transistor. Processes of forming an electronic device allow a vertical conductive region to be formed after a conductive electrode, a gate electrode, a source region, or both.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 8, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Publication number: 20160315185
    Abstract: An electronic device can include a semiconductor layer, an insulating layer overlying the semiconductor layer, and a conductive electrode. In an embodiment, a first conductive electrode member overlies the insulating layer, and a second conductive electrode member overlies and is spaced apart from the semiconductor layer. The second conductive electrode member has a first end and a second end opposite the first end, wherein each of the semiconductor layer and the first conductive electrode member are closer to the first end of the second conductive electrode member than to the second end of the second conductive electrode member. In another embodiment, the conductive electrode can be substantially L-shaped. In a further embodiment, a process can include forming the first and second conductive electrode members such that they abut each other. The second conductive electrode member can have the shape of a sidewall spacer.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 9466698
    Abstract: An electronic device can include different vertical conductive structures that can be formed at different times. The vertical conductive structures can have the same or different shapes. In an embodiment, an insulating spacer can be used to help electrically insulate a particular vertical conductive structure from another part of the workpiece, and an insulating spacer may not be used to electrically isolate a different vertical conductive structure. The vertical conductive structures can be tailored for particular electrical considerations or to a process flow when formation of other electronic components may also be formed within either or both of the particular vertical conductive structures.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: October 11, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 9412862
    Abstract: An electronic device can include a semiconductor layer, an insulating layer overlying the semiconductor layer, and a conductive electrode. In an embodiment, a first conductive electrode member overlies the insulating layer, and a second conductive electrode member overlies and is spaced apart from the semiconductor layer. The second conductive electrode member has a first end and a second end opposite the first end, wherein each of the semiconductor layer and the first conductive electrode member are closer to the first end of the second conductive electrode member than to the second end of the second conductive electrode member. In another embodiment, the conductive electrode can be substantially L-shaped. In a further embodiment, a process can include forming the first and second conductive electrode members such that they abut each other. The second conductive electrode member can have the shape of a sidewall spacer.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 9, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 9159797
    Abstract: An electronic device can include a substrate including an underlying doped region and a semiconductor layer overlying the substrate. A trench can have a sidewall and extend at least partly through the semiconductor layer. The electronic device can further include a first conductive structure adjacent to the underlying doped region, an insulating layer, and a second conductive structure within the trench. The insulating layer can be disposed between the first and second conductive structures, and the first conductive structure can be disposed between the insulating layer and the underlying doped region. Processes of forming the electronic device may be performed such that the first conductive structure includes a conductive fill material or a doped region within the semiconductor layer. The first conductive structure can allow the underlying doped region to be farther from the channel region and allow RDSON to be lower for a given BVDSS.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 13, 2015
    Assignee: Semiconductor Componenets Industries, LLC
    Inventors: Gary H. Loechelt, Prasad Venkatraman
  • Patent number: 9070562
    Abstract: A circuit can include a pair of switching elements that have terminals electrically connected to terminals of a power supply and have other terminals electrically connected to an output terminal. The circuit can include rectifying elements and one or more charge storage elements. The circuit may be used as a Buck converter. The rectifying element(s) and charge storage element(s) may help to reduce ringing at an output terminal of the circuit during normal operation and reduce the likelihood of exceeding a breakdown voltage between current-carrying electrodes of a switching element within the circuit during a switching operation.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 30, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Carroll Casteel
  • Patent number: 9064949
    Abstract: An electronic device can include a semiconductor layer, and a trench extending into the semiconductor layer and having a tapered shape. In an embodiment, the trench includes a wider portion and a narrower portion. The electronic device can include a doped semiconductor region that extends to a narrower portion of the trench and has a dopant concentration greater than a dopant concentration of the semiconductor layer. In another embodiment, the electronic device can include a conductive structure within a relatively narrower portion of the trench, and a conductive electrode within a relatively wider portion of the trench. In another embodiment, a process of forming the electronic device can include forming a sacrificial plug and may allow insulating layers of different thicknesses to be formed within the trench.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 23, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Publication number: 20150171210
    Abstract: An electronic device can include a buried conductive region and a semiconductor layer over the buried conductive region. The electronic device can further include a horizontally-oriented doped region and a vertical conductive region, wherein the vertical conductive region is electrically connected to the horizontally-oriented doped region and the buried conductive region. The electronic device can still further include an insulating layer overlying the horizontally-oriented doped region, and a first conductive electrode overlying the insulating layer and the horizontally-oriented doped region, wherein a portion of the vertical conductive region does not underlie the first conductive electrode. The electronic device can include a Schottky contact that allows for a Schottky diode to be connected in parallel with a transistor. Processes of forming an electronic device allow a vertical conductive region to be formed after a conductive electrode, a gate electrode, a source region, or both.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 9006821
    Abstract: An electronic device can include a semiconductor layer overlying a substrate and having a primary surface and a thickness, wherein a trench extends through at least approximately 50% of the thickness of semiconductor layer to a depth. The electronic device can further include a conductive structure within the trench, wherein the conductive structure extends at least approximately 50% of the depth of the trench. The electronic device can still further include a vertically-oriented doped region within the semiconductor layer adjacent to and electrically insulated from the conductive structure; and an insulating layer disposed between the vertically-oriented doped region and the conductive structure. A process of forming an electronic device can include patterning a semiconductor layer to define a trench extending through at least approximately 50% of the thickness of the semiconductor layer and forming a vertically-oriented doped region after patterning the semiconductor layer to define the trench.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 14, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Prasad Venkatraman, Gordon M. Grivna, Gary H. Loechelt
  • Patent number: 8999782
    Abstract: An electronic device can include a buried conductive region and a semiconductor layer over the buried conductive region. The electronic device can further include a horizontally-oriented doped region and a vertical conductive region, wherein the vertical conductive region is electrically connected to the horizontally-oriented doped region and the buried conductive region. The electronic device can still further include an insulating layer overlying the horizontally-oriented doped region, and a first conductive electrode overlying the insulating layer and the horizontally-oriented doped region, wherein a portion of the vertical conductive region does not underlie the first conductive electrode. The electronic device can include a Schottky contact that allows for a Schottky diode to be connected in parallel with a transistor. Processes of forming an electronic device allow a vertical conductive region to be formed after a conductive electrode, a gate electrode, a source region, or both.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 7, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 8928050
    Abstract: An electronic device can include a semiconductor layer having a primary surface, and a Schottky contact comprising a metal-containing member in contact with a horizontally-oriented lightly doped region within the semiconductor layer and lying adjacent to the primary surface. In an embodiment, the metal-containing member lies within a recess in the semiconductor layer and contacts the horizontally-oriented lightly doped region along a sidewall of the recess. In other embodiment, the Schottky contact may not be formed within a recess, and a doped region may be formed within the semiconductor layer under the horizontally-oriented lightly doped region and have a conductivity type opposite the horizontally-oriented lightly doped region. The Schottky contacts can be used in conjunction with power transistors in a switching circuit, such as a high-frequency voltage regulator.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: January 6, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Prasad Venkatraman, Zia Hossain, Gordon M. Grivna
  • Patent number: 8872276
    Abstract: An electronic device, including an integrated circuit, can include a buried conductive region and a semiconductor layer overlying the buried conductive region, wherein the semiconductor layer has a primary surface and an opposing surface lying closer to the buried conductive region. The electronic device can also include a first doped region and a second doped region spaced apart from each other, wherein each is within the semiconductor layer and lies closer to primary surface than to the opposing surface. The electronic device can include current-carrying electrodes of transistors. A current-carrying electrode of a particular transistor includes the first doped region and is a source or an emitter and is electrically connected to the buried conductive region. Another current-carrying electrode of a different transistor includes the second doped region and is a drain or a collector and is electrically connected to the buried conductive region.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: RE45365
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Components Industries
    Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna