Patents by Inventor Gary Koretzky

Gary Koretzky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931380
    Abstract: The present invention provides compositions and methods for inhibiting one or more diacylglycerol kinase (DGK) isoform in a cell in order to enhance the cytolytic activity of the cell. In one embodiment, the cells may be used in adoptive T cell transfer. For example, in some embodiments, the cell is modified to express a chimeric antigen receptor (CAR). Inhibition of DGK in T cells used in adoptive T cell transfer increases cytolytic activity of the T cells and thus may be used in the treatment of a variety of conditions, including cancer, infection, and immune disorders.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: March 19, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Steven M. Albelda, Liang-Chuan Wang, Gary Koretzky, Matthew Riese
  • Publication number: 20210236553
    Abstract: The present invention provides compositions and methods for inhibiting one or more diacylglycerol kinase (DGK) isoform in a cell in order to enhance the cytolytic activity of the cell. In one embodiment, the cells may be used in adoptive T cell transfer. For example, in some embodiments, the cell is modified to express a chimeric antigen receptor (CAR). Inhibition of DGK in T cells used in adoptive T cell transfer increases cytolytic activity of the T cells and thus may be used in the treatment of a variety of conditions, including cancer, infection, and immune disorders.
    Type: Application
    Filed: April 14, 2021
    Publication date: August 5, 2021
    Inventors: Steven M. ALBELDA, Liang-Chuan WANG, Gary KORETZKY, Matthew RIESE
  • Publication number: 20190008898
    Abstract: The present invention provides compositions and methods for inhibiting one or more diacylglycerol kinase (DGK) isoform in a cell in order to enhance the cytolytic activity of the cell. In one embodiment, the cells may be used in adoptive T cell transfer. For example, in some embodiments, the cell is modified to express a chimeric antigen receptor (CAR). Inhibition of DGK in T cells used in adoptive T cell transfer increases cytolytic activity of the T cells and thus may be used in the treatment of a variety of conditions, including cancer, infection, and immune disorders.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 10, 2019
    Inventors: Steven M. ALBELDA, Liang-Chuan WANG, Gary KORETZKY, Matthew RIESE
  • Patent number: 9937205
    Abstract: The present invention provides compositions and methods for inhibiting one or more diacylglycerol kinase (DGK) isoform in a cell in order to enhance the cytolytic activity of the cell. In one embodiment, the cells may be used in adoptive T cell transfer. For example, in some embodiments, the cell is modified to express a chimeric antigen receptor (CAR). Inhibition of DGK in T cells used in adoptive T cell transfer increases cytolytic activity of the T cells and thus may be used in the treatment of a variety of conditions, including cancer, infection, and immune disorders.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: April 10, 2018
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Steven M. Albelda, Liang-Chuan Wang, Gary Koretzky, Matthew Riese
  • Publication number: 20150224142
    Abstract: The present invention provides compositions and methods for inhibiting one or more diacylglycerol kinase (DGK) isoform in a cell in order to enhance the cytolytic activity of the cell. In one embodiment, the cells may be used in adoptive T cell transfer. For example, in some embodiments, the cell is modified to express a chimeric antigen receptor (CAR). Inhibition of DGK in T cells used in adoptive T cell transfer increases cytolytic activity of the T cells and thus may be used in the treatment of a variety of conditions, including cancer, infection, and immune disorders.
    Type: Application
    Filed: September 4, 2013
    Publication date: August 13, 2015
    Inventors: Steven M. Albelda, Liang-Chuan Wang, Gary Koretzky, Matthew Riese
  • Patent number: 6194633
    Abstract: A nonhuman animal having somatic and germ cells in which at least one allele of an endogenous SLP-76 gene is functionally disrupted is provided. The animal may be heterozygous or, more preferably, homozygous for the SLP-76 gene disruption and is preferably a mouse. In homozygous animals, the percentage of peripheral T cells is substantially decreased compared to wildtype animals, whereas the percentage of B cells and macrophages in the periphery is substantially normal, indicating that SLP-76 disruption causes a profound block in T cell development. The animals of the invention can be used, for example, as controls to evaluate the efficacy of SLP-76 inhibitors and to identify disease conditions that can be treated with SLP-76 inhibitors. A transgenic nonhuman animal having a functionally disrupted endogenous SLP-76 gene but which has been reconstituted with an exogenous SLP-76 transgene (e.g., a human SLP-76 gene or a SLP-76 gene whose expression in targeted to a particular cell population) is also provided.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: February 27, 2001
    Assignee: University of Iowa Research Foundation
    Inventors: Gary A. Koretzky, James L. Clements, Roger Williamson