Patents by Inventor Gary S. Guthart

Gary S. Guthart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108429
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Application
    Filed: October 20, 2023
    Publication date: April 4, 2024
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. Dimaio
  • Patent number: 11832911
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: December 5, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Publication number: 20230109364
    Abstract: The systems and methods of the present disclosure are used for guiding a medical instrument towards a target, the method positioning a medical instrument at a first location within a patient anatomy, wherein the medical instrument comprises at least one sensor, determining a first biomarker measurement using the at least one sensor, determining a second biomarker measurement using the at least one sensor, comparing the first biomarker measurement with the second biomarker measurement to determine a proximity to the target to provide a first comparison, and providing guidance for moving the medical instrument based on results of the first comparison.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Federico Barbagli, Simon P. Dimaio, Gary S. Guthart
  • Patent number: 11559357
    Abstract: The systems and methods of the present disclosure are used for guiding a medical instrument towards a target, the method positioning a medical instrument at a first location within a patient anatomy, wherein the medical instrument comprises at least one sensor, determining a first biomarker measurement using the at least one sensor, determining a second biomarker measurement using the at least one sensor, comparing the first biomarker measurement with the second biomarker measurement to determine a proximity to the target to provide a first comparison, and providing guidance for moving the medical instrument based on results of the first comparison.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: January 24, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Federico Barbagli, Simon P. DiMaio, Gary S. Guthart
  • Patent number: 11534251
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: December 27, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20210346107
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20210259793
    Abstract: A computer-assisted surgical system comprises a master grip input mechanism, a surgical instrument comprising an end effector configured to apply a gripping force, and a controller. The controller is configured to receive a first input signal in response to grip input at the master grip input mechanism. The controller is further configured to receive a second input signal after receiving the first input signal, wherein the second input signal is received in response to a procedure input at a master input device, with the procedure input being different from the grip input at the master grip input mechanism and further being indicative of a user's readiness to operate the surgical instrument to perform a first surgical procedure. The controller is further configured to, in response to receiving the first input signal and the second input signal, cause one or more degrees of freedom of the surgical instrument to be placed in a locked state.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 26, 2021
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Gregory F. RICHMOND, Gary S. GUTHART
  • Publication number: 20210196414
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Publication number: 20210106394
    Abstract: A robotic surgery system comprises a mounting base, a plurality of surgical instruments, and an articulate support assembly. Each instrument is insertable into a patient through an associated minimally invasive aperture to a desired internal surgical site. The articulate support assembly movably supports the instruments relative to the base. The support generally comprises an orienting platform, a platform linkage movably supporting the orienting platform relative to the base, and a plurality of manipulators mounted to the orienting platform, wherein each manipulator movably supports an associated instrument.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Thomas G. Cooper, Stephen J. Blumenkranz, Gary S. Guthart, David J. Rosa
  • Patent number: 10973599
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 13, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Patent number: 10952802
    Abstract: A computer-assisted surgical system comprises a master grip input mechanism, a surgical instrument comprising an end effector configured to apply a gripping force, and a controller. The controller is configured to receive a first input signal in response to grip input at the master grip input mechanism. The controller is further configured to receive a second input signal after receiving the first input signal, wherein the second input signal is received in response to a procedure input at a master input device, with the procedure input being different from the grip input at the master grip input mechanism and further being indicative of a user's readiness to operate the surgical instrument to perform a first surgical procedure. The controller is further configured to, in response to receiving the first input signal and the second input signal, cause one or more degrees of freedom of the surgical instrument to be placed in a locked state.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 23, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Gregory F. Richmond, Gary S. Guthart
  • Patent number: 10898281
    Abstract: A robotic surgery system comprises a mounting base, a plurality of surgical instruments, and an articulate support assembly. Each instrument is insertable into a patient through an associated minimally invasive aperture to a desired internal surgical site. The articulate support assembly movably supports the instruments relative to the base. The support generally comprises an orienting platform, a platform linkage movably supporting the orienting platform relative to the base, and a plurality of manipulators mounted to the orienting platform, wherein each manipulator movably supports an associated instrument.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: January 26, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Thomas G. Cooper, Stephen J. Blumenkranz, Gary S. Guthart, David J. Rosa
  • Publication number: 20200323593
    Abstract: Methods and apparatus for enhancing surgical planning provide enhanced planning of entry port placement and/or robot position for laparoscopic, robotic, and other minimally invasive surgery. Various embodiments may be used in robotic surgery systems to identify advantageous entry ports for multiple robotic surgical tools into a patient to access a surgical site. Generally, data such as imaging data is processed and used to create a model of a surgical site, which can then be used to select advantageous entry port sites for two or more surgical tools based on multiple criteria. Advantageous robot positioning may also be determined, based on the entry port locations and other factors. Validation and simulation may then be provided to ensure feasibility of the selected port placements and/or robot positions. Such methods, apparatus, and systems may also be used in non-surgical contexts, such as for robotic port placement in munitions diffusion or hazardous waste handling.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 15, 2020
    Inventors: Eve Coste-Maniere, Louai Adhami, Jean-Daniel Boissonnat, Alain Carpentier, Gary S. Guthart
  • Publication number: 20200297443
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Application
    Filed: March 16, 2017
    Publication date: September 24, 2020
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Patent number: 10709506
    Abstract: Methods and apparatus for enhancing surgical planning provide enhanced planning of entry port placement and/or robot position for laparoscopic, robotic, and other minimally invasive surgery. Various embodiments may be used in robotic surgery systems to identify advantageous entry ports for multiple robotic surgical tools into a patient to access a surgical site. Generally, data such as imaging data is processed and used to create a model of a surgical site, which can then be used to select advantageous entry port sites for two or more surgical tools based on multiple criteria. Advantageous robot positioning may also be determined, based on the entry port locations and other factors. Validation and simulation may then be provided to ensure feasibility of the selected port placements and/or robot positions. Such methods, apparatus, and systems may also be used in non-surgical contexts, such as for robotic port placement in munitions diffusion or hazardous waste handling.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: July 14, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Eve Coste-Maniere, Louai Adhami, Jean-Daniel Boissonnat, Alain Carpentier, Gary S. Guthart
  • Publication number: 20200179058
    Abstract: The systems and methods of the present disclosure are used for guiding a medical instrument towards a target, the method positioning a medical instrument at a first location within a patient anatomy, wherein the medical instrument comprises at least one sensor, determining a first biomarker measurement using the at least one sensor, determining a second biomarker measurement using the at least one sensor, comparing the first biomarker measurement with the second biomarker measurement to determine a proximity to the target to provide a first comparison, and providing guidance for moving the medical instrument based on results of the first comparison.
    Type: Application
    Filed: June 21, 2018
    Publication date: June 11, 2020
    Inventors: Federico Barbagli, Simon P. DiMaio, Gary S. Guthart
  • Publication number: 20200078121
    Abstract: A computer-assisted surgical system comprises a master grip input mechanism, a surgical instrument comprising an end effector configured to apply a gripping force, and a controller. The controller is configured to receive a first input signal in response to grip input at the master grip input mechanism. The controller is further configured to receive a second input signal after receiving the first input signal, wherein the second input signal is received in response to a procedure input at a master input device, with the procedure input being different from the grip input at the master grip input mechanism and further being indicative of a user's readiness to operate the surgical instrument to perform a first surgical procedure. The controller is further configured to, in response to receiving the first input signal and the second input signal, cause one or more degrees of freedom of the surgical instrument to be placed in a locked state.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Gregory F. RICHMOND, Gary S. GUTHART
  • Publication number: 20200060777
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 10512514
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: December 24, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 10512513
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 24, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart