Patents by Inventor Gary T. Boyd

Gary T. Boyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151880
    Abstract: An optical film includes a structured film and a light control film formed on the structured film. The structured film includes a substrate and a plurality of polymeric microstructures formed on a major surface of the substrate. Each microstructure includes an optical facet and a sidewall meeting the optical facet at a ridge of the microstructure. The light control film includes an optically transparent material disposed on and covering the plurality of polymeric microstructures, and a plurality of optically absorptive louvers formed in the optically transparent material opposite the structured film. The louvers extend along a longitudinal direction and are spaced apart along an orthogonal transverse direction. The louvers have an average depth D into the optically transparent material and have an average width W in the transverse direction. D/W can be greater than 2. The optical film is integrally formed.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 9, 2024
    Inventors: Tao Liu, Tri D. Pham, Gary T. Boyd, Daniel J. Schmidt, Caleb T. Nelson, Owen M. Anderson
  • Publication number: 20240142673
    Abstract: An optical film has a major surface including a plurality of microstructures. Each microstructure includes an optical facet and a sidewall meeting the optical facet at a ridge of the microstructure. The optical facet and the sidewall define an oblique angle therebetween. For each microstructure in at least a majority of the microstructures, an optically absorptive layer is disposed on the sidewall. The optical film can include a polymeric layer having a microstructured surface at least partially coated with an inorganic optically transparent layer. The optically absorptive layer can an average thickness t where 100 nm<t<1 micrometer. A first layer can be disposed between the sidewall and the optically absorptive layer where the first layer has a lower extinction coefficient than the optically absorptive layer.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 2, 2024
    Inventors: Tao Liu, Gary T. Boyd, Daniel J. Schmidt, Caleb T. Nelson, Owen M. Anderson, Tri D. Pham
  • Publication number: 20240118463
    Abstract: A light control film comprises a light input surface and a light output surface opposite the light input surface. Alternating transmissive regions and absorptive regions are disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30 and the alternating transmissive region and absorptive regions have a relative transmission at a viewing angle of 0 degrees of at least 75%.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 11, 2024
    Inventors: Daniel J. Schmidt, Caleb T. Nelson, Kevin W. Gotrik, Raymond J. Kenney, John A. Wheatley, Kenneth A. Epstein, Gary T. Boyd, Corey D. Balts
  • Publication number: 20240122043
    Abstract: An optical system includes a light source, an optical film curved about a first axis, and a light control film curved about the first axis and disposed between the light source and the optical film. The optical film includes a microstructured first major surface and an opposing second major surface. The microstructured first major surface defines a linear Fresnel lens including a plurality of Fresnel elements extending longitudinally along the first axis. The first major surface of the optical film faces of the optically transmissive regions, a centerline between adjacent optically absorptive regions is substantially normal to a major surface of the light control film.
    Type: Application
    Filed: October 29, 2020
    Publication date: April 11, 2024
    Inventors: Tao Liu, Gary T. Boyd, Daniel J. Schmidt, Caleb T. Nelson, Owen M. Anderson, Tri D. Pham, Encai Hao, Shu-Ching Fan
  • Patent number: 11947135
    Abstract: A light control film is described comprising alternating transmissive regions and absorptive regions disposed between a light input surface and a light output surface. The absorptive regions have an aspect ratio of at least 30. In some embodiments, the alternating transmissive regions and absorptive regions have a transmission as measured with a spectrophotometer at a viewing angle of 0 degrees of at least 35, 40, 45, or 50% for a wavelength of the range 320-400 nm (UV) and/or at least 65, 70, 75, or 80% for a wavelength of the range 700-1400 nm (NIR). In another embodiment, the absorptive regions block light at the light input surface and light output surface and the maximum surface area that is blocked is less than 20% of the total alternating transmissive regions and absorptive regions. Also described are various optical communication systems comprising the light control films described herein and methods.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 2, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Schmidt, Caleb T. Nelson, Kevin W. Gotrik, Raymond J. Kenney, John A. Wheatley, Kenneth A. Epstein, Gary T. Boyd, Corey D. Balts
  • Patent number: 11885989
    Abstract: A light control film, comprises a light input surface and alight output surface opposite the light input surface. Alternating transmissive regions and absorptive regions are disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30 and the alternating transmissive region and absorptive regions have a relative transmission at a viewing angle of 0 degrees of at least 75%.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Schmidt, Caleb T. Nelson, Kevin W. Gotrik, Raymond J. Kenney, John A. Wheatley, Kenneth A. Epstein, Gary T. Boyd, Corey D. Balts
  • Patent number: 11874560
    Abstract: A backlight for providing uniform illumination to a display panel includes a plurality of discrete light sources. A multilayer polymeric partial reflector is disposed on the plurality of discrete light sources. For substantially normally incident light the partial reflector includes a reflection band includes a blue wavelength, a reflectance greater than about 80% at the blue wavelength, a left band edge between about 370 nm to about 420 nm, a right band edge between about 500 nm and 600 nm, and an average transmission between about 20% to about 80% for visible wavelengths greater than the right band edge. A reflective polarizer is disposed on the partial reflector. For substantially normally incident light having the blue wavelength, the reflective polarizer reflects at least 60% of the light having the first polarization state and transmits at least 60% of the light having the second polarization state.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Gary T. Boyd
  • Publication number: 20240004124
    Abstract: A backlight includes a plurality of discrete light sources configured to face a display, and an optical film disposed on the light sources and below and proximate a first plane. The optical film includes a plurality of through-holes extending between first and second major surfaces of the optical film. Each through-hole has a first opening at the first major surface, and a second opening at the second major surface with an open area A2. Each through-hole has length, H, such that H/A2 is greater than or equal to about 0.13.
    Type: Application
    Filed: November 10, 2021
    Publication date: January 4, 2024
    Inventors: Hideaki Shirotori, Kazuhiko Toyooka, Sayaka Kado, Gary T. Boyd
  • Patent number: 11828972
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20230350101
    Abstract: An optical film for reducing at least one of sparkle and moire in a display system includes a structured first major surface that, in at least a first cross-section in a first plane substantially orthogonal to the optical film, has a sinusoidal shape having a variable pitch of greater than about 0.5 microns. For a substantially normally incident light and blue, green, and red wavelengths that are at least 50 nm apart from each other and are disposed within respective blue, green, and red wavelength ranges, optical transmissions of the optical film versus transmitted angle for the blue, green and red wavelengths have respective blue, green, and red transmission bands disposed at angles greater than about 1 degree and having respective blue, green, and red full width at half maxima (FWHMs), at least two of which at least partially overlap.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 2, 2023
    Inventors: Gary T. Boyd, David A. Rosen, Tao Liu, Matthew M. Philippi, Brett J. Sitter
  • Patent number: 11782310
    Abstract: A display system includes a light source configured to emit light from a light exit surface, the emitted light having an emitted wavelength. An optical filter is disposed on the light exit surface of the light source. One or more light converting films are disposed between the optical filter and the light exit surface of the light source. The one or more light converting films are configured to receive the emitted light from the light source and convert at least portions of the received emitted light to blue, green, and red lights having respective blue, green and red wavelengths. For a substantially normally incident light and for at least an in-plane first polarization state, the optical filter reflects more than about 80% of the incident light having the emitted wavelength, and transmits greater than about 60% of the incident light for each of the blue, green and red wavelengths.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: October 10, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Yu Hsin Lu, Gary T. Boyd, Matthew B. Johnson, Ryan T. Fabick, Carl A. Stover, Adam D. Haag
  • Publication number: 20230244107
    Abstract: A backlight to a display panel including a plurality of discrete spaced apart light sources configured to emit light and arranged two-dimensionally on a first substrate substantially reflective at least in regions between the light sources, a reflective polarizer disposed on the plurality of discrete spaced apart light sources, a first optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of positive microlenses arranged in a regular two-dimensional array, and a second optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of retroreflective elements arranged in a regular two-dimensional array. The second optical diffuser is configured to receive the emitted light and retroreflect the received light for incident angles less than a predetermined threshold value and transmit at least 60% of the received light for incident angles greater than the predetermined threshold value.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Inventors: Yu Hsin Lu, Gary T. Boyd
  • Publication number: 20230194926
    Abstract: An integral multilayer optical construction includes opposing first and second structured major surfaces having two-dimensional arrays of respective first and second structures. An optical diffuser is embedded within the optical construction between the first and second structured major surfaces. The optical diffuser has an optical haze of greater than about 5% for at least one visible wavelength in a visible wavelength range extending from about 420 nm to 680 nm. When the optical construction is disposed on a light source with one of the first and second structured major surfaces facing the light source, light emitted by the light source is transmitted by the optical construction with a cross-section of an angular luminous distribution of the transmitted light in at least one first plane that includes a normal to the optical construction, including first and second intensity peaks at respective first and second angles on opposite sides of the normal.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Gary T. Boyd, Shu-Ching Fan, Alex P. Pongratz, Gary E. Gaides
  • Publication number: 20230176419
    Abstract: A display system includes a light source configured to emit light from a light exit surface, the emitted light having an emitted wavelength. An optical filter is disposed on the light exit surface of the light source. One or more light converting films are disposed between the optical filter and the light exit surface of the light source. The one or more light converting films are configured to receive the emitted light from the light source and convert at least portions of the received emitted light to blue, green, and red lights having respective blue, green and red wavelengths. For a substantially normally incident light and for at least an in-plane first polarization state, the optical filter reflects more than about 80% of the incident light having the emitted wavelength, and transmits greater than about 60% of the incident light for each of the blue, green and red wavelengths.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Inventors: Yu Hsin Lu, Gary T. Boyd, Matthew B. Johnson, Ryan T. Fabick, Carl A. Stover, Adam D. Haag
  • Patent number: 11585966
    Abstract: The disclosure describes asymmetric turning films (ATFs) that may be used in conjunction with multiple light sources in a liquid crystal display assembly to provide multiple different characteristic output distributions of light. In some examples, the ATFs include a structured surface defining a plurality of microstructures having two or more faces with each face configured to reflect light in different directions. The microstructure may define a microstructure axis and an angle gradient characterizing the rotation of the microstructure axis across the structured surface of the ATF.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 21, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kenneth A. Epstein, Nicholas A. Johnson, Michael E. Lauters, Shannon L. Siefken, Gary T. Boyd
  • Publication number: 20220308281
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Application
    Filed: October 2, 2020
    Publication date: September 29, 2022
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20220269136
    Abstract: A backlight for providing uniform illumination to a display panel includes a plurality of discrete light sources. A multilayer polymeric partial reflector is disposed on the plurality of discrete light sources. For substantially normally incident light the partial reflector includes a reflection band includes a blue wavelength, a reflectance greater than about 80% at the blue wavelength, a left band edge between about 370 nm to about 420 nm, a right band edge between about 500 nm and 600 nm, and an average transmission between about 20% to about 80% for visible wavelengths greater than the right band edge. A reflective polarizer is disposed on the partial reflector. For substantially normally incident light having the blue wavelength, the reflective polarizer reflects at least 60% of the light having the first polarization state and transmits at least 60% of the light having the second polarization state.
    Type: Application
    Filed: July 23, 2020
    Publication date: August 25, 2022
    Inventor: Gary T. Boyd
  • Publication number: 20220163704
    Abstract: A curved display includes a display panel having a curved major surface and a light control film disposed proximate the display panel. The curved major surface is curved about a first axis, and a central portion of the curved major surface has a surface normal along a second axis substantially orthogonal to the first axis. The light control film includes a major surface having a substantially same shape as the curved major surface and includes a plurality of alternating optically transmissive and optically absorptive regions. In a cross-section orthogonal to the first axis, a transmissive region and adjacent absorptive regions define a central ray transmission direction through the optically transmissive region such that a light ray emitted by the display panel and transmitted through the optically transmissive region along the transmission direction is refracted upon exiting the curved display into a direction substantially parallel to the second axis.
    Type: Application
    Filed: June 11, 2020
    Publication date: May 26, 2022
    Inventors: Tao Liu, Gary T. Boyd, Tri D. Pham, Garth V. Antila, Keith R. Jacobs
  • Publication number: 20220019007
    Abstract: A light control film is described comprising alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30. In some embodiments, an absorptive layer or reflective layer is disposed between the alternating transmissive regions and absorptive regions and the light input surface and/or light output surface. In another embodiment, the alternating transmissive regions comprise an absorptive material. The light control film can exhibit low transmission of visible light and high transmission of near infrared light. Also described is a light detection system comprising such light control films and a microstructured film.
    Type: Application
    Filed: December 2, 2019
    Publication date: January 20, 2022
    Inventors: Daniel J. Schmidt, Caleb T. Nelson, Kevin W. Gotrik, Raymond J. Kenney, Kenneth A. Epstein, Gary T. Boyd, Corey D. Balts, Morgan A. Priolo, John A. Wheatley, Elisa M. Cross
  • Patent number: 11226433
    Abstract: Optical films for redirecting light are described, and optical systems, such as display systems, incorporating such optical films are described. The optical film may include a first structured surface including a plurality of prismatic structures, and a second structured surface opposing the first structured surface and including a plurality of microstructures. An effective transmission of the optical film is not more than 1% less than a film with a comparable construction except for a smooth, non-structured second surface.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 18, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert A. Yapel, Joseph T. Aronson, Matthew R. C. Atkinson, Gary T. Boyd, Slah Jendoubi, Mitchell A. F. Johnson, Scott R. Kaytor, Steven H. Kong, Fei Lu, Tri D. Pham, Robert B. Secor, Steven D. Solomonson