Patents by Inventor Gaurav Agrawal

Gaurav Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9144925
    Abstract: Disclosed is a process for making shape memory polyphenylene sulfide, comprising: curing polyphenylene sulfide to produce cured polyphenylene sulfide; comminuting the cured polyphenylene sulfide to form cured polyphenylene sulfide particles; disposing the cured polyphenylene sulfide particles in a mold; heating the mold for flowing the cured polyphenylene sulfide; compressing, by applying a compressive force, the cured polyphenylene sulfide; cooling the cured polyphenylene sulfide; relieving the compressive force; and de-molding the cured polyphenylene sulfide to produce the shape memory polyphenylene sulfide.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: September 29, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Jiaxiang Ren, David P. Gerrard, James E. Goodson, Ping Duan, Gaurav Agrawal
  • Patent number: 9127515
    Abstract: A nanomatrix carbon composite is disclosed. The nanomatrix carbon composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The composite also includes a plurality of dispersed particles comprising a particle core material that comprises an allotrope of carbon dispersed in the nanomatrix and a bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix carbon composites are uniquely lightweight, high-strength, high thermal conductivity materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 8, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Soma Chakraborty, Gaurav Agrawal
  • Patent number: 9120978
    Abstract: A method for decomposing an asphaltene particle includes contacting the asphaltene particle with an intercalating agent and separating an asphaltene molecule from the asphaltene particle to decompose the asphaltene particle. Dispersing an asphaltene particle includes functionalizing the asphaltene particle and contacting the asphaltene particle with a solvent to disperse the asphaltene particle. Such asphaltene particle decomposition and dispersal can be used in a method for improving oil recovery that includes disposing a reagent in an oil environment; contacting an asphaltene particle with the reagent; decomposing the asphaltene particle to produce decomposed asphaltene; and displacing the decomposed asphaltene to improve oil recovery.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: September 1, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Houman M. Shammai, Gaurav Agrawal
  • Patent number: 9109429
    Abstract: An engineered dispersed particle-cellular nanomatrix composite material is disclosed. The engineered dispersed particle-cellular nanomatrix composite material is configured for contact with a fluid and configured to provide a selectable and controllable transition from one of a first strength condition to a second strength condition that is lower than a functional strength threshold, or a first weight loss amount to a second weight loss amount that is greater than a weight loss limit, as a function of a time in contact with the fluid.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: August 18, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Gaurav Agrawal
  • Patent number: 9103173
    Abstract: Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the fox of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 11, 2015
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Anthony A. DiGiovanni, Gaurav Agrawal, Danny E. Scott, Vipul Mathur
  • Patent number: 9101978
    Abstract: A powder metal compact is disclosed. The powder metal compact includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The compact also includes a plurality of dispersed particles comprising a particle core material that comprises Mg, Al, Zn or Mn, or a combination thereof, dispersed in the nanomatrix and a solid-state bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix powder metal compacts are uniquely lightweight, high-strength materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: August 11, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Gaurav Agrawal
  • Patent number: 9090955
    Abstract: A powder metal composite is disclosed. The powder metal composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The compact also includes a plurality of dispersed particles comprising a particle core material that comprises Mg, Al, Zn or Mn, or a combination thereof, dispersed in the nanomatrix, the core material of the dispersed particles comprising a plurality a plurality of distributed carbon nanoparticles, and a bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix powder metal composites are uniquely lightweight, high-strength materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 28, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20150197991
    Abstract: Cutting elements for earth-boring applications may include a substrate and a polycrystalline diamond material secured to the substrate. A first region of the polycrystalline diamond material may exhibit a first volume percentage of nanoparticles bonded to diamond grains within the first region. A second region of the polycrystalline diamond material adjacent to the first region may exhibit a second, different volume percentage of nanoparticles bonded to diamond grains within the second region. Methods of making cutting elements for earth-boring applications may involve positioning a first mixture of particles having a first volume percentage of nanoparticles and a second mixture of particles having a second, different volume percentage of nanoparticles within a container.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 16, 2015
    Inventors: Anthony A. DiGiovanni, Danny E. Scott, Soma Chakraborty, Gaurav Agrawal
  • Patent number: 9079295
    Abstract: A substantially homogeneous particle mixture is disclosed. The mixture includes a plurality of derivatized nanodiamond particles comprising a plurality of first functional groups. The mixture also includes a plurality of microdiamond particles, wherein the derivatized nanodiamond particles and microdiamond particles comprise a substantially homogeneous particle mixture. The mixture may also include a plurality of third particles comprising nanoparticles not identical to the derivatized nanodiamond particles, or a plurality of microparticles not identical to the microdiamond particles, or a combination thereof, and the derivatized nanodiamond particles, derivatized microdiamond particles and third particles comprise the substantially homogeneous particle mixture.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Gaurav Agrawal
  • Patent number: 9079246
    Abstract: A method of making a powder metal compact is disclosed. The method includes forming a coated metallic powder comprising a plurality of coated metallic powder particles having particle cores with nanoscale metallic coating layers disposed thereon, wherein the metallic coating layers have a chemical composition and the particle cores have a chemical composition that is different than the chemical composition of the metallic coating layers. The method also includes applying a predetermined temperature and a predetermined pressure to the coated powder particles sufficient to form a powder metal compact by solid-phase sintering of the nanoscale metallic coating layers of the plurality of coated powder particles to form a substantially-continuous, cellular nanomatrix of a nanomatrix material, a plurality of dispersed particles dispersed within the cellular nanomatrix and a solid-state bond layer extending throughout the cellular nanomatrix.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Gaurav Agrawal, Bobby Salinas
  • Publication number: 20150191646
    Abstract: Removing an asphaltene particle from a substrate includes contacting a silicate nanoparticle with a chemical group to form a functionalized silicate nanoparticle, the chemical group includes a first portion; and a second portion comprising an aromatic moiety or a nonaromatic moiety, the first portion being bonded to the silicate nanoparticle; contacting the asphaltene particle with the functionalized silicate nanoparticle, the asphaltene particle being disposed on the substrate; interposing the functionalized silicate nanoparticle between the asphaltene particle and the substrate; and separating the asphaltene particle from the substrate with the functionalized silicate nanoparticle to remove the asphaltene particle. A composition includes a functionalized silicate nanoparticle comprising a reaction product of a silicate nanoparticle and a functionalization compound; and a fluid.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 9, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Soma Chakraborty, Gaurav Agrawal, Toby D. Hain
  • Publication number: 20150144343
    Abstract: A method of obtaining a hydrocarbon material from a subterranean formation comprises forming a flooding suspension comprising degradable particles and a carrier fluid. The flooding suspension is introduced into a subterranean formation containing a hydrocarbon material to form an emulsion stabilized by the degradable particles and remove the emulsion from the subterranean formation. At least a portion of the degradable particles are degraded to destabilize the emulsion. An additional method of obtaining a hydrocarbon material from a subterranean formation, and a stabilized emulsion are also described.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Oleg A. Mazyar, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson, Valery N. Khabashesku
  • Publication number: 20150144344
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Oleg A. Mazyar, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson, Valery N. Khabashesku
  • Publication number: 20150143755
    Abstract: A method of forming a polycrystalline diamond compact from_a substantially homogeneous suspension of nanodiamond particles and microdiamond particles is disclosed The method includes disposing a first functional group on a plurality of nanodiamond particles to form derivatized nanodiamond particles, and combining the derivatized nanodiamond particles with a plurality of microdiamond particles, metal solvent-catalyst particles and a solvent to form a substantially homogeneous suspension of these particles in the solvent. A method of making an article is also disclosed. The method includes forming a superabrasive polycrystalline diamond compact by combining: a plurality of derivatized nanodiamond particles, a plurality of derivatized microdiamond particles having an average particle size greater than that of the derivatized nanodiamond particles, and a metal solvent-catalyst.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20150128504
    Abstract: A substance includes diamond particles having a maximum linear dimension of less than about 1 ?m and an organic compound attached to surfaces of the diamond particles. The organic compound may include a surfactant or a polymer. A method of forming a substance includes exposing diamond particles to an organic compound, and exposing the diamond particles in the presence of the organic compound to ultrasonic energy. The diamond particles may have a maximum linear dimension of less than about 1 ?m. A composition includes a liquid, a plurality of diamond nanoparticles dispersed within the liquid, and an organic compound attached to surfaces of the diamond nanoparticles. A method includes mixing a plurality of diamond particles with a solution comprising a liquid solvent and an organic compound, and exposing the mixture including the plurality of diamond nanoparticles and the solution to ultrasonic energy.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Soma Chakraborty, Gaurav Agrawal, Anthony A. DiGiovanni
  • Patent number: 9022107
    Abstract: A dissolvable tool includes, a body with a surface having at least one perforation therethrough, the at least one perforation being dimensioned to control a rate of intrusion of an environment reactive with at least a portion of the dissolvable tool located below the surface.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: May 5, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Gaurav Agrawal, Zhiyue Xu
  • Patent number: 9017546
    Abstract: A method for decomposing an asphaltene particle includes contacting the asphaltene particle with an intercalating agent; and reacting the intercalating agent to increase a distance between asphaltene molecules in the asphaltene particle to decompose the asphaltene particle. In a method for producing decomposed asphaltene, the method includes disposing an intercalating agent in an oil environment; contacting an asphaltene particle in the oil environment with the intercalating agent; reacting the intercalating agent to produce product molecules; and decomposing the asphaltene particle to produce decomposed asphaltene.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 28, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Gaurav Agrawal
  • Patent number: 9012377
    Abstract: Removing an asphaltene particle from a substrate includes contacting a silicate nanoparticle with a chemical group to form a functionalized silicate nanoparticle, the chemical group includes a first portion; and a second portion comprising an aromatic moiety, the first portion being bonded to the silicate nanoparticle; contacting the asphaltene particle with the functionalized silicate nanoparticle, the asphaltene particle being disposed on the substrate; interposing the functionalized silicate nanoparticle between the asphaltene particle and the substrate; and separating the asphaltene particle from the substrate with the functionalized silicate nanoparticle to remove the asphaltene particle. A composition includes a functionalized silicate nanoparticle comprising a reaction product of a silicate nanoparticle and an aromatic compound; and a fluid.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 21, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Valery Khabashesku, Oleg Mazyar, Soma Chakraborty, Gaurav Agrawal, Toby D. Hain
  • Patent number: 9010424
    Abstract: Disintegrative particles are designed to be blended with and pumped with typical proppant materials, e.g. sand, ceramics, bauxite, etc, into the fractures of a subterranean formation. With time and/or change in wellbore or environmental condition, these particles will either disintegrate partially or completely, in non-limiting examples, by contact with downhole fracturing fluid, formation water, or a stimulation fluid such as an acid or brine. Once disintegrated, the proppant pack within the fractures will lead to greater open space enabling higher conductivity and flow rates. The disintegrative particles may be made by compacting and/or sintering metal powder particles, for instance magnesium or other reactive metal or their alloys. Alternatively, particles coated with compacted and/or sintered nanometer-sized or micrometer sized coatings could also be designed where the coatings disintegrate faster or slower than the core in a changed downhole environment.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Gaurav Agrawal, James B. Crews, Zhiyue Xu
  • Patent number: 8985248
    Abstract: Cutting elements comprise a multi-portion polycrystalline material. At least one portion of the multi-portion polycrystalline material comprises a higher volume of nanoparticles than at least another portion. Earth-boring tools comprise a body and at least one cutting element attached to the body. The at least one cutting element comprises a hard polycrystalline material. The hard polycrystalline material comprises a first portion comprising a first volume of nanoparticles. A second portion of the hard polycrystalline material comprises a second volume of nanoparticles. The first volume of nanoparticles differs from the second volume of nanoparticles. Methods of forming cutting elements for earth-boring tools comprise forming a volume of superabrasive material, including forming a first portion of the superabrasive material comprising a first volume of nanoparticles.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 24, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Anthony A. DiGiovanni, Danny E. Scott, Soma Chakraborty, Gaurav Agrawal