Patents by Inventor Gaylen V. Erbert

Gaylen V. Erbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6760356
    Abstract: A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: July 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Gaylen V. Erbert, Subrat Biswal, Joseph M. Bartolick, Brent C. Stuart, John K. Crane, Steve Telford, Michael D. Perry
  • Patent number: 6739728
    Abstract: The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 25, 2004
    Assignee: The Regents of the University of California
    Inventors: Gaylen V. Erbert, Subrat Biswal, Joseph M. Bartolick, Brent C. Stuart, Steve Telford
  • Publication number: 20030189756
    Abstract: The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 9, 2003
    Applicant: The Regents of the University of California
    Inventors: Gaylen V. Erbert, Subrat Biswal, Joseph M. Bartolick, Brent C. Stuart, Steve Telford
  • Publication number: 20030189959
    Abstract: A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 9, 2003
    Applicant: The Regents of the University of California
    Inventors: Gaylen V. Erbert, Subrat Biswal, Joseph M. Bartolick, Brent C. Stuart, John K. Crane, Steve Telford, Michael D. Perry
  • Patent number: 5247527
    Abstract: A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: September 21, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Gaylen V. Erbert, Isaac L. Bass, Richard P. Hackel, Sherman L. Jenkins, Vernon K. Kanz, Jeffrey A. Paisner
  • Patent number: 5132979
    Abstract: The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length.The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.
    Type: Grant
    Filed: August 16, 1991
    Date of Patent: July 21, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Gaylen V. Erbert