Patents by Inventor Gehan Anil Joseph Amaratunga

Gehan Anil Joseph Amaratunga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130234518
    Abstract: This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 12, 2013
    Applicant: Enecsys Limited
    Inventors: Asim Mumtaz, Lesley Chisenga, Gehan Anil Joseph Amaratunga
  • Patent number: 8531857
    Abstract: In a reverse conducting semiconductor device, which forms a composition circuit, a positive voltage that is higher than a positive voltage of a collector electrode may be applied to an emitter electrode. In this case, in a region of the reverse conducting semiconductor device in which a return diode is formed, a body contact region functions as an anode, a drift contact region functions as a cathode, and current flows from the anode to the cathode. When a voltage having a lower electric potential than the collector electrode is applied to the trench gate electrode at that time, p-type carriers are generated within the cathode and a quantity of carriers increases within the return diode. As a result, a forward voltage drop of the return diode lowers, and constant loss of electric power can be reduced. Electric power loss can be reduced in a power supply device that uses such a composition circuit in which a switching element and the return diode are connected in reverse parallel.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: September 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akitaka Soeno, Jun Saito, Gehan Anil Joseph Amaratunga, Florin Udrea
  • Patent number: 8405367
    Abstract: We describe a power conditioning unit with maximum power point tracking (MPPT) for a dc power source, in particular a photovoltaic panel. A power injection control block has a sense input coupled to an energy storage capacitor on a dc link and controls a dc-to-ac converter to control the injected mains power. The power injection control block tracks the maximum power point by measuring a signal on the dc link which depends on the power drawn from the dc power source, and thus there is no need to measure the dc voltage and current from the dc source. In embodiments the signal is a ripple voltage level and the power injection control block controls an amplitude of an ac current output such that an amount of power transferred to the grid mains is dependent on an amplitude of a sinusoidal voltage component on the energy storage capacitor.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: March 26, 2013
    Assignee: Enecsys Limited
    Inventors: Lesley Chisenga, Gehan Anil Joseph Amaratunga, Cuauhtemoc Rodriguez
  • Patent number: 8405248
    Abstract: This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: March 26, 2013
    Assignee: Enecsys Limited
    Inventors: Asim Mumtaz, Lesley Chisenga, Gehan Anil Joseph Amaratunga
  • Patent number: 8310101
    Abstract: The invention relates to a grid synchronizer for connecting an AC output of a power converter to the AC grid mains. In one aspect the invention provides a grid synchronizer comprising an inverter controller to control an AC output of the inverter, the controller including a receiver to receive grid data from a grid sensor location remote from said inverter. In another aspect we describe techniques for rapid removal of charge from a control terminal of a power switching device such as a MOSFET, IGBT or Thyristor using a particular driver circuit.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 13, 2012
    Assignee: Enecsys Limited
    Inventors: Gehan Anil Joseph Amaratunga, Lesley Chisenga, Andrabadu Viraj
  • Patent number: 8304316
    Abstract: In a power semiconductor device and a method of forming a power semiconductor device, a thin layer of semiconductor substrate is left below the drift region of a semiconductor device. A power semiconductor device has an active region that includes the drift region and has top and bottom surfaces formed in a layer provided on a semiconductor substrate. A portion of the semiconductor substrate below the active region is removed to leave a thin layer of semiconductor substrate below the drift region. Electrical terminals are provided directly or indirectly to the top surface of the active region to allow a voltage to be applied laterally across the drift region.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 6, 2012
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Gehan Anil Joseph Amaratunga, Tanya Trajkovic, Vasantha Pathirana
  • Publication number: 20120161528
    Abstract: Improved techniques for photovoltaic power generation are described. Inverter failure is can be a significant problem in solar photovoltaic systems as it can lead to loss of opportunity to harvest energy. A solar photovoltaic (PV) power generation system is described comprising solar PV panels and power conditioning units. A dc power distribution bus is coupled to the solar PV panels and the power conditioning units to switchably share dc power from the solar PV panels between the power conditioning units. Power distribution controllers detect a faulty power conditioning unit and reroute power from a solar PV panel coupled to the faulty power conditioning unit to other power conditioning units via the dc distribution bus.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 28, 2012
    Inventors: Asim Mumtaz, Paul Randal Engle, JR., Gehan Anil Joseph Amaratunga, Andrew John Matthew
  • Patent number: 8067855
    Abstract: This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: November 29, 2011
    Assignee: Enecsys Limited
    Inventors: Asim Mumtaz, Lesley Chisenga, Gehan Anil Joseph Amaratunga
  • Patent number: 8053783
    Abstract: A high voltage diamond based switching device capable of sustaining high currents in the on state with a relatively low impedance and a relatively low optical switching flux, and capable of being switched off in the presence of the high voltage being switched. The device includes a diamond body having a Schottky barrier contact, held in reverse bias by the applied voltage to be switched, to an essentially intrinsic diamond layer or portion in the diamond body, a second metal contact, and an optical source or other illuminating or irradiating device such that when the depletion region formed by the Schottky contact to the intrinsic diamond layer is exposed to its radiation charge carriers are generated. Cain in the total number of charge carriers then occurs as a result of these charge carriers accelerating under the field within the intrinsic diamond layer and generating further carriers by assisted avalanche breakdown.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: November 8, 2011
    Assignee: Element Six Limited
    Inventors: Gehan Anil Joseph Amaratunga, Mihai Brezeanu, Jeremy Suhail Rashid, Nalin Lalith Rupesinghe, Antonella Tajani, Daniel James Twitchen, Florin Udrea, Christopher John Howard Wort
  • Publication number: 20110049990
    Abstract: The invention relates to a grid synchroniser for connecting an AC output of a power converter to the AC grid mains. In one aspect the invention provides a grid synchroniser comprising an inverter controller to control an AC output of the inverter, the controller including a receiver to receive grid data from a grid sensor location remote from said inverter. In another aspect we describe techniques for rapid removal of charge from a control terminal of a power switching device such as a MOSFET, IGBT or Thyristor using a particular driver circuit.
    Type: Application
    Filed: December 19, 2008
    Publication date: March 3, 2011
    Applicant: ENECSYS LIMITED
    Inventors: Gehan Anil Joseph Amaratunga, Lesley Chisenga, Andrabadu Viraj
  • Publication number: 20100309692
    Abstract: We describe a power conditioning unit with maximum power point tracking (MPPT) for a dc power source, in particular a photovoltaic panel. A power injection control block has a sense input coupled to an energy storage capacitor on a dc link and controls a dc-to-ac converter to control the injected mains power. The power injection control block tracks the maximum power point by measuring a signal on the dc link which depends on the power drawn from the dc power source, and thus there is no need to measure the dc voltage and current from the dc source. In embodiments the signal is a ripple voltage level and the power injection control block controls an amplitude of an ac current output such that an amount of power transferred to the grid mains is dependent on an amplitude of a sinusoidal voltage component on the energy storage capacitor.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 9, 2010
    Inventors: Lesley Chisenga, Gehan Anil Joseph Amaratunga, Cuauhtemoc Rodriguez
  • Publication number: 20100283514
    Abstract: In a reverse conducting semiconductor device, which forms a composition circuit, a positive voltage that is higher than a positive voltage of a collector electrode may be applied to an emitter electrode. In this case, in a region of the reverse conducting semiconductor device in which a return diode is formed, a body contact region functions as an anode, a drift contact region functions as a cathode, and current flows from the anode to the cathode. When a voltage having a lower electric potential than the collector electrode is applied to the trench gate electrode at that time, p-type carriers are generated within the cathode and a quantity of carriers increases within the return diode. As a result, a forward voltage drop of the return diode lowers, and constant loss of electric power can be reduced. Electric power loss can be reduced in a power supply device that uses such a composition circuit in which a switching element and the return diode are connected in reverse parallel.
    Type: Application
    Filed: August 28, 2008
    Publication date: November 11, 2010
    Inventors: Akitaka Soeno, Jun Saito, Gehan Anil Joseph Amaratunga, Florin Udrea
  • Publication number: 20100264736
    Abstract: This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
    Type: Application
    Filed: June 3, 2010
    Publication date: October 21, 2010
    Inventors: Asim Mumtaz, Lesley Chisenga, Gehan Anil Joseph Amaratunga
  • Patent number: 7679160
    Abstract: A high voltage/power semiconductor device has at least one active region having a plurality of high voltage junctions electrically connected in parallel. At least part of each of the high voltage junctions is located in or on a respective membrane such that the active region is provided at least in part over plural membranes. There are non-membrane regions between the membranes. The device has a low voltage terminal and a high voltage terminal. At least a portion of the low voltage terminal and at least a portion of the high voltage terminal are connected directly or indirectly to a respective one of the high voltage junctions. At least those portions of the high voltage terminal that are in direct or indirect contact with one of the high voltage junctions are located on or in a respective one of the plural membranes.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 16, 2010
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Gehan Anil Joseph Amaratunga
  • Patent number: 7589379
    Abstract: This invention is generally concerned with power semiconductors such as power MOS transistors, insulated gate by bipolar transistors (IGBTs), high voltage diodes and the like, and methods for their fabrication. A power semiconductor, the semiconductor comprising: a power device, said power device having first and second electrical contact regions and a drift region extending therebetween; and a semiconductor substrate mounting said device; and wherein said power semiconductor includes an electrically insulating layer between said semiconductor substrate and said power device, said electrically insulating layer having a thickness of at least 5 ?m.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: September 15, 2009
    Assignee: Cambridge Semiconductor Limited
    Inventors: Gehan Anil Joseph Amaratunga, Florin Udrea
  • Publication number: 20090160015
    Abstract: In a power semiconductor device and a method of forming a power semiconductor device, a thin layer of semiconductor substrate is left below the drift region of a semiconductor device. A power semiconductor device has an active region that includes the drift region and has top and bottom surfaces formed in a layer provided on a semiconductor substrate. A portion of the semiconductor substrate below the active region is removed to leave a thin layer of semiconductor substrate below the drift region. Electrical terminals are provided directly or indirectly to the top surface of the active region to allow a voltage to be applied laterally across the drift region.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Cambridge Semiconductor Limited
    Inventors: Florin UDREA, Gehan Anil Joseph Amaratunga, Tanya Trajkovic, Vasantha Pathirana
  • Publication number: 20090058498
    Abstract: A half bridge circuit has a first switch having at least one control gate and a second switch having at least two control gates. A first driver has an output connected to a control gate of the first switch. A second driver has an output connected to a first control gate of the second switch. The output of the first driver is connected to a second control gate of the second switch by a circuit arrangement such that when the first driver is operated to apply a high, positive voltage to the control gate of the first switch, a positive voltage is applied to the second control gate of the second switch, and such that when the first driver is operated to apply a low, zero or small voltage to the control gate of the first switch, a negative voltage is applied to said second control gate of the second switch.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Applicant: Cambridge Semiconductor Limited
    Inventors: Florin UDREA, Nishad Udugampola, Gehan Anil Joseph Amaratunga
  • Publication number: 20080203397
    Abstract: A high voltage diamond based switching device capable of sustaining high currents in the on state with a relatively low impedance and a relatively low optical switching flux, and capable of being switched off in the presence of the high voltage being switched. The device includes a diamond body having a Schottky barrier contact, held in reverse bias by the applied voltage to be switched, to an essentially intrinsic diamond layer or portion in the diamond body, a second metal contact, and an optical source or other illuminating or irradiating device such that when the depletion region formed by the Schottky contact to the intrinsic diamond layer is exposed to its radiation charge carriers are generated. Cain in the total number of charge carriers then occurs as a result of these charge carriers accelerating under the field within the intrinsic diamond layer and generating further carriers by assisted avalanche breakdown.
    Type: Application
    Filed: September 8, 2005
    Publication date: August 28, 2008
    Inventors: Gehan Anil Joseph Amaratunga, Mihai Brezeau, Jeremy Suhail Rashid, Nalin Lalith Rupesinghe, Antonella Tajani
  • Patent number: 7355226
    Abstract: This invention is generally concerned with power semiconductors such as power MOS transistors, insulated gate by bipolar transistors (IGBTs), high voltage diodes and the like, and method for their fabrication. A power semiconductor, the semiconductor comprising a power device, said power device having first and second electrical contact regions and a drift region extending therebetween; and a semiconductor substrate mounting said device; and wherein said power semiconductor includes an electrically insulating layer between said semiconductor substrate and said power device, said electrically insulating layer having a thickness of at least 5 ?m.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 8, 2008
    Assignee: Cambridge Semiconductor Limited
    Inventors: Gehan Anil Joseph Amaratunga, Florin Udrea
  • Patent number: 6853127
    Abstract: A manufacture and methods are provided for a field emission cathode and field emission display comprising a conjugated polymer material. The manufacture of the invention comprises a conjugated polymer material, which may include substituted polythiophene, polyalkylthiophene, and poly-3-octylthiophene. A polymer material layer may be formed by distributing a conjugated polymer material and a solvent onto a substrate. The solvent may be evaporated under a vacuum. The polymer layer may be molded to include projections to promote field emission. Additionally, the polymer material may be doped with an electron donor material. Methods according to the invention include the steps of forming a polymer layer comprising conjugated polymer material on a substrate, distributing a polymer solution including a solvent onto the substrate, evaporating the substrate, and shaping the surface of the polymer layer by use of a mould.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: February 8, 2005
    Assignee: The University of Liverpool
    Inventors: William Eccleston, Gehan Anil Joseph Amaratunga, Ismail Musa