Patents by Inventor Gennadiy Agranov

Gennadiy Agranov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190089944
    Abstract: An imager may include depth sensing pixels that receive and convert incident light into image signals. The imager may have an associated imaging lens that focuses the incident light onto the imager. Each of the depth sensing pixels may include a microlens that focuses incident light received from the imaging lens through a color filter onto first and second photosensitive regions of a substrate. The first and second photosensitive regions may provide different and asymmetrical angular responses to incident light. Depth information for each depth sensing pixel may be determined based on the difference between output signals of the first and second photosensitive regions of that depth sensing pixel. Color information for each depth sensing pixel may be determined from a summation of output signals of the first and second photosensitive regions.
    Type: Application
    Filed: October 30, 2018
    Publication date: March 21, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gennadiy AGRANOV, Dongqing CAO, Hirofumi KOMORI
  • Patent number: 10205937
    Abstract: An imaging method includes imaging a scene using an imaging system, which includes an array of radiation sensing elements, including first sensing elements with symmetrical angular responses and second sensing elements with asymmetrical angular responses, interspersed among the first sensing elements, and optics configured to focus radiation from the scene onto the array. The method further includes processing first signals output by the first sensing elements in order to identify one or more areas of uniform irradiance on the array, and processing second signals output by the second sensing elements that are located in the identified areas, in order to detect a misalignment of the optics with the array.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Apple Inc.
    Inventors: Douglas J. Fettig, Gennadiy A. Agranov, Gershon Rosenblum
  • Patent number: 10192911
    Abstract: Imaging apparatus includes a photosensitive medium and a bias electrode, which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits is formed on a semiconductor substrate. Each pixel circuit includes a pixel electrode coupled to collect the charge carriers from the photosensitive medium; a readout circuit configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate coupled between the pixel electrode and the readout circuit; and a shutter gate coupled in parallel with the skimming gate between a node in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 29, 2019
    Assignee: APPLE INC.
    Inventors: Gennadiy A. Agranov, QingFei Chen, Oray O. Cellek, Xiangli Li
  • Patent number: 10158843
    Abstract: An imager may include depth sensing pixels that receive and convert incident light into image signals. The imager may have an associated imaging lens that focuses the incident light onto the imager. Each of the depth sensing pixels may include a microlens that focuses incident light received from the imaging lens through a color filter onto first and second photosensitive regions of a substrate. The first and second photosensitive regions may provide different and asymmetrical angular responses to incident light. Depth information for each depth sensing pixel may be determined based on the difference between output signals of the first and second photosensitive regions of that depth sensing pixel. Color information for each depth sensing pixel may be determined from a summation of output signals of the first and second photosensitive regions.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 18, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gennadiy Agranov, Dongqing Cao, Hirofumi Komori
  • Publication number: 20180341009
    Abstract: An electro-optical device includes at least one laser light source and a beam steering device, which transmits and scan the at least one beam across a target scene. One or more sensing elements output a signal indicative of a time of incidence of a single photon on the sensing element from the target scene. Circuitry processes the signal in order to determine respective distances to points in the scene and controls the light source to emit the beam at the low level during a first scan, to identify, based on the first scan, the points in the scene that are located at respective distances from the device that are greater than a predefined threshold distance, and to control the laser light source during a second scan to emit the beam at the high level while the beam steering device directs the beam toward the identified points.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 29, 2018
    Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
  • Publication number: 20180331138
    Abstract: Imaging apparatus includes a photosensitive medium and a bias electrode, which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits is formed on a semiconductor substrate. Each pixel circuit includes a pixel electrode coupled to collect the charge carriers from the photosensitive medium; a readout circuit configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate coupled between the pixel electrode and the readout circuit; and a shutter gate coupled in parallel with the skimming gate between a node in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Application
    Filed: March 29, 2018
    Publication date: November 15, 2018
    Inventors: Gennadiy A. Agranov, QingFei Chen, Oray O. Cellek, Xiangli Li
  • Publication number: 20180288398
    Abstract: Depth sensing imaging pixels include pairs of left and right pixels forming an asymmetrical angular response to incident light. A single microlens is positioned above each pair of left and right pixels. Each microlens spans across each of the pairs of pixels in a horizontal direction. Each microlens has a length that is substantially twice the length of either the left or right pixel in the horizontal direction; and each microlens has a width that is substantially the same as a width of either the left or right pixel in a vertical direction. The horizontal and vertical directions are horizontal and vertical directions of a planar image array. A light pipe in each pixel is used to improve light concentration and reduce cross talk.
    Type: Application
    Filed: June 5, 2018
    Publication date: October 4, 2018
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gennadiy AGRANOV, Dongqing CAO, Avi YARON
  • Patent number: 10015471
    Abstract: Depth sensing imaging pixels include pairs of left and right pixels forming an asymmetrical angular response to incident light. A single microlens is positioned above each pair of left and right pixels. Each microlens spans across each of the pairs of pixels in a horizontal direction. Each microlens has a length that is substantially twice the length of either the left or right pixel in the horizontal direction; and each microlens has a width that is substantially the same as a width of either the left or right pixel in a vertical direction. The horizontal and vertical directions are horizontal and vertical directions of a planar image array. A light pipe in each pixel is used to improve light concentration and reduce cross talk.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: July 3, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gennadiy Agranov, Dongqing Cao, Avi Yaron
  • Patent number: 10014336
    Abstract: An imager may include depth sensing pixels that provide an asymmetrical angular response to incident light. The depth sensing pixels may each include a substrate region formed from a photosensitive portion and a non-photosensitive portion. The depth sensing pixels may include mechanisms that prevent regions of the substrate from receiving incident light. Depth sensing pixel pairs may be formed from depth sensing pixels that have different asymmetrical angular responses. Each of the depth sensing pixel pairs may effectively divide the corresponding imaging lens into separate portions. Depth information for each depth sensing pixel pair may be determined based on the difference between output signals of the depth sensing pixels of that depth sensing pixel pair. The imager may be formed from various combinations of depth sensing pixel pairs and color sensing pixel pairs arranged in a Bayer pattern or other desired patterns.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 3, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gennadiy Agranov, Dongqing Cao, Junichi Nakamura, Richard Scott Johnson
  • Patent number: 10009552
    Abstract: An imaging system may include an image sensor having front side illuminated near infrared image sensor pixels. Each pixel may be formed in a graded epitaxial substrate layer such as a graded p-type epitaxial layer or a graded n-type epitaxial layer on a graded p-type epitaxial layer. Each pixel may be separated from an adjacent pixel by an isolation trench formed in the graded epitaxial layer. A deep p-well may be formed within each isolation trench. The isolation trenches and photodiodes for the pixels may be formed in the graded p-type epitaxial layer or the graded n-type epitaxial layer. The graded p-type epitaxial layer may have an increasing concentration of dopants that increases toward the backside of the image sensor. The graded n-type epitaxial layer may have an increasing concentration of dopants that increases toward the front side of the image sensor.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: June 26, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Sergey Velichko, Gennadiy Agranov
  • Patent number: 9997551
    Abstract: A sensing device includes an array of sensing elements. Each sensing element includes a photodiode, including a p-n junction, and a local biasing circuit, coupled to reverse-bias the p-n junction at a bias voltage greater than a breakdown voltage of the p-n junction by a margin sufficient so that a single photon incident on the p-n junction triggers an avalanche pulse output from the sensing element. A bias control circuit is coupled to set the bias voltage in different ones of the sensing elements to different, respective values that are greater than the breakdown voltage.
    Type: Grant
    Filed: December 20, 2015
    Date of Patent: June 12, 2018
    Assignee: APPLE INC.
    Inventors: Shingo Mandai, Gennadiy A. Agranov, Matthew C. Waldon
  • Patent number: 9973719
    Abstract: Apparatus, systems, and methods are described to assist in reducing dark current in an active pixel sensor. In various embodiments, a potential barrier arrangement is configured to block the flow of charge carriers generated outside a photosensitive region. In various embodiments, a potential well-potential barrier arrangement is formed to direct charge carriers away from the photosensitive region during an integration time.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: May 15, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Chen Xu, Gennadiy Agranov, Igor Karasev
  • Publication number: 20180109742
    Abstract: Pixel binning is performed by summing charge from some pixels positioned diagonally in a pixel array. Pixel signals output from pixels positioned diagonally in the pixel array may be combined on the output lines. A signal representing summed charge produces a binned 2×1 cluster. A signal representing combined voltage signals produces a binned 2×1 cluster. A signal representing summed charge and a signal representing combined pixel signals can be combined digitally to produce a binned 2×2 pixel. Orthogonal binning may be performed on other pixels in the pixel array by summing charge on respective common sense regions and then combining the voltage signals that represent the summed charge on respective output lines.
    Type: Application
    Filed: June 19, 2017
    Publication date: April 19, 2018
    Inventors: Gennadiy A. Agranov, Claus Molgaard, Ashirwad Bahukhandi, Chiajen Lee, Xiangli Li
  • Publication number: 20180090526
    Abstract: A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 29, 2018
    Inventors: Shingo Mandai, Cristiano L. Niclass, Nobuhiro Karasawa, Xiaofeng Fan, Arnaud Laflaquiere, Gennadiy A. Agranov
  • Publication number: 20180090536
    Abstract: A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 29, 2018
    Inventors: Shingo Mandai, Cristiano L. Niclass, Nobuhiro Karasawa, Xiaofeng Fan, Arnaud Laflaquiere, Gennadiy A. Agranov
  • Publication number: 20180081041
    Abstract: Depth-sensing apparatus includes a laser, which is configured to emit pulses of optical radiation toward a scene, and one or more detectors, which are configured to receive the optical radiation that is reflected from points in the scene and to output signals indicative of respective times of arrival of the received radiation. Control and processing circuitry is coupled to drive the laser to emit a sequence of the pulses in a predefined temporal pattern that specifies irregular intervals between the pulses in the sequence, and to correlate the output signals with the temporal pattern in order to find respective times of flight for the points in the scene.
    Type: Application
    Filed: May 4, 2017
    Publication date: March 22, 2018
    Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Thierry Oggier
  • Publication number: 20180046837
    Abstract: An electronic device may include an optical image sensor and a pin hole array mask layer above the optical image sensor. The electronic device may also include a display layer above the pin hole array mask layer that includes spaced apart display pixels, and a transparent cover layer above the display layer defining a finger placement surface capable of receiving a finger adjacent thereto.
    Type: Application
    Filed: March 24, 2016
    Publication date: February 15, 2018
    Inventors: Giovanni GOZZINI, Gennadiy A. AGRANOV, Brian M. KING, Gershon ROSENBLUM, Mohammad YEKE YAZDANDOOST
  • Publication number: 20180041755
    Abstract: An imaging method includes imaging a scene using an imaging system, which includes an array of radiation sensing elements, including first sensing elements with symmetrical angular responses and second sensing elements with asymmetrical angular responses, interspersed among the first sensing elements, and optics configured to focus radiation from the scene onto the array. The method further includes processing first signals output by the first sensing elements in order to identify one or more areas of uniform irradiance on the array, and processing second signals output by the second sensing elements that are located in the identified areas, in order to detect a misalignment of the optics with the array.
    Type: Application
    Filed: April 27, 2017
    Publication date: February 8, 2018
    Inventors: Douglas J. Fettig, Gennadiy A. Agranov, Gershon Rosenblum
  • Publication number: 20170179173
    Abstract: A sensing device includes an array of sensing elements. Each sensing element includes a photodiode, including a p-n junction, and a local biasing circuit, coupled to reverse-bias the p-n junction at a bias voltage greater than a breakdown voltage of the p-n junction by a margin sufficient so that a single photon incident on the p-n junction triggers an avalanche pulse output from the sensing element. A bias control circuit is coupled to set the bias voltage in different ones of the sensing elements to different, respective values that are greater than the breakdown voltage.
    Type: Application
    Filed: December 20, 2015
    Publication date: June 22, 2017
    Inventors: Shingo Mandai, Gennadiy A. Agranov, Matthew C. Waldon
  • Publication number: 20170176579
    Abstract: An electro-optical device includes a laser light source, which emits at least one beam of light pulses, a beam steering device, which transmits and scans the at least one beam across a target scene, and an array of sensing elements. Each sensing element outputs a signal indicative of a time of incidence of a single photon on the sensing element. Light collection optics image the target scene scanned by the transmitted beam onto the array. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 22, 2017
    Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier