Patents by Inventor Geoff Chin

Geoff Chin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10133039
    Abstract: A method for making a gradient index infrared transmitting optic by thermally treating a preform, where the preform comprises two or more infrared transmitting glasses having different compositions and optical properties, where there is an interface between adjacent glasses, where during the thermal treatment one or more chemical elements from the glasses diffuses through one or more interface resulting in a diffused gradient index optical element comprising a gradient in the chemical element concentration, and where the optical element has a gradient in refractive index and dispersion. Also disclosed is the related infrared transmitting optical element made by this method.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 20, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera, Vinh Q. Nguyen
  • Publication number: 20180272683
    Abstract: Infrared transmitting glasses bonded into an optical element without interlayer voids by stacking at least two different infrared transmitting glasses inside a vessel where each glass has a different refractive index, a different dispersion, or both, and where the glasses all have similar viscosities, thermal expansion coefficients, and glass transition temperatures; placing a weight on top of the stack; applying a vacuum to the vessel; applying an isostatic pressure of at least 1500 psi; and after releasing the isostatic pressure, annealing at a temperature within 10° C. of the glass transition temperature at a pressure between 0 and 1000 psi. Applying the vacuum, applying the isostatic pressure, and annealing are done sequentially and with no intermediate transitions to ambient temperature or pressure.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 27, 2018
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera
  • Patent number: 9981459
    Abstract: A method for bonding infrared transmitting glasses into an optical element without interlayer voids by stacking at least two different infrared transmitting glasses inside a vessel where each glass has a different refractive index, a different dispersion, or both, and where the glasses all have similar viscosities, thermal expansion coefficients, and glass transition temperatures; placing a weight on top of the stack; applying a vacuum to the vessel; applying an isostatic pressure of at least 1500 psi; and after releasing the isostatic pressure, annealing at a temperature within 10° C. of the glass transition temperature at a pressure between 0 and 1000 psi. Applying the vacuum, applying the isostatic pressure, and annealing are done sequentially and with no intermediate transitions to ambient temperature or pressure. Also disclosed is the related optical element made by this method.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 29, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera
  • Publication number: 20160377845
    Abstract: A method for making a gradient index infrared transmitting optic by thermally treating a preform, where the preform comprises two or more infrared transmitting glasses having different compositions and optical properties, where there is an interface between adjacent glasses, where during the thermal treatment one or more chemical elements from the glasses diffuses through one or more interface resulting in a diffused gradient index optical element comprising a gradient in the chemical element concentration, and where the optical element has a gradient in refractive index and dispersion. Also disclosed is the related infrared transmitting optical element made by this method.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 29, 2016
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera, Vinh Q. Nguyen
  • Publication number: 20160375669
    Abstract: A method for bonding infrared transmitting glasses into an optical element without interlayer voids by stacking at least two different infrared transmitting glasses inside a vessel where each glass has a different refractive index, a different dispersion, or both, and where the glasses all have similar viscosities, thermal expansion coefficients, and glass transition temperatures; placing a weight on top of the stack; applying a vacuum to the vessel; applying an isostatic pressure of at least 1500 psi; and after releasing the isostatic pressure, annealing at a temperature within 10° C. of the glass transition temperature at a pressure between 0 and 1000 psi. Applying the vacuum, applying the isostatic pressure, and annealing are done sequentially and with no intermediate transitions to ambient temperature or pressure. Also disclosed is the related optical element made by this method.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 29, 2016
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera
  • Publication number: 20140245794
    Abstract: The present invention is generally directed to a method of making chalcogenide glasses including holding the melt in a vertical furnace to promote homogenization and mixing; slow cooling the melt at less than 10° C. per minute; and sequentially quenching the melt from the top down in a controlled manner. Additionally, the present invention provides for the materials produced by such method. The present invention is also directed to a process for removing oxygen and hydrogen impurities from chalcogenide glass components using dynamic distillation.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Inventors: Vinh Q. Nguyen, Jasbinder S. Sanghera, Shyam S. Bayya, Geoff Chin, Ishwar D. Aggarwal
  • Patent number: 8726698
    Abstract: The present invention is generally directed to a method of making chalcogenide glasses including holding the melt in a vertical furnace to promote homogenization and mixing; slow cooling the melt at less than 10° C. per minute; and sequentially quenching the melt from the top down in a controlled manner. Additionally, the present invention provides for the materials produced by such method. The present invention is also directed to a process for removing oxygen and hydrogen impurities from chalcogenide glass components using dynamic distillation.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: May 20, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Vinh Q Nguyen, Jasbinder S Sanghera, Shyam S Bayya, Geoff Chin, Ishwar D Aggarwal
  • Patent number: 8266924
    Abstract: This invention pertains to a process of bonding a magnesium aluminate spinel article or articles and a germanate glass article or articles including the step of heating them together above the softening temperature of the glass.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 18, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shyam S. Bayya, Jasbinder S. Sanghera, Guillermo R. Villalobos, Geoff Chin, Ishwar D. Aggarwal
  • Publication number: 20100022378
    Abstract: The present invention is generally directed to a method of making chalcogenide glasses including holding the melt in a vertical furnace to promote homogenization and mixing; slow cooling the melt at less than 10° C. per minute; and sequentially quenching the melt from the top down in a controlled manner. Additionally, the present invention provides for the materials produced by such method. The present invention is also directed to a process for removing oxygen and hydrogen impurities from chalcogenide glass components using dynamic distillation.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Inventors: Vinh Q. Nguyen, Jasbinder S. Sanghera, Shyam S. Bayya, Geoff Chin, Ishwar D. Aggarwal