Patents by Inventor Geoffrey Hohn

Geoffrey Hohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920239
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. Van Schravendijk, Geoffrey Hohn
  • Publication number: 20230332291
    Abstract: A showerhead comprises first, second, and third components. The first component includes a disc-shaped portion and a cylindrical portion extending perpendicularly from the disc-shaped portion. The disc-shaped portion includes first and second sets of holes having first and second diameters, respectively, that extend from a center of the disc-shaped portion to an inner diameter of the cylindrical portion. The second component is disc-shaped and is attached to the disc-shaped portion of the first component, defines a plenum that is in fluid communication with the second set of holes, and includes a pair of arc-shaped grooves along a periphery and on opposite ends of the top surface and a plurality of grooves extending between the pair of arc-shaped grooves. The third component is disc-shaped, is attached to the second component, and includes a gas inlet connected to the plenum, and fluid inlet and outlet connected to the arc-shaped grooves.
    Type: Application
    Filed: September 21, 2021
    Publication date: October 19, 2023
    Inventors: Bhadri VARADARAJAN, Aaron DURBIN, Huatan QIU, Bo GONG, Rachel E. BATZER, Gopinath BHIMARASETTI, Aaron Blake MILLER, Patrick G. BREILING, Geoffrey HOHN
  • Publication number: 20230304156
    Abstract: An assembly for use in a process chamber for depositing a film on a wafer. The assembly includes a pedestal having a pedestal top surface extending from a central axis of the pedestal to an outer edge, the pedestal top surface having a plurality of wafer supports for supporting a wafer. A pedestal step having a step surface extending from a step inner diameter towards the outer edge of the pedestal. A focus ring rests on the step surface and having a mesa extending from an outer diameter of the focus ring to a mesa inner diameter. A shelf steps downwards from a mesa surface at the mesa inner diameter, and extends between the mesa inner diameter and an inner diameter of the focus ring. The shelf is configured to support at least a portion of a wafer bottom surface of the wafer at a process temperature.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Geoffrey HOHN, Huatan QIU, Rachel E. BATZER, Guangbi YUAN, Zhe GUI
  • Patent number: 11702748
    Abstract: An assembly for use in a process chamber for depositing a film on a wafer. The assembly includes a pedestal having a pedestal top surface extending from a central axis of the pedestal to an outer edge, the pedestal top surface having a plurality of wafer supports for supporting a wafer. A pedestal step having a step surface extending from a step inner diameter towards the outer edge of the pedestal. A focus ring rests on the step surface and having a mesa extending from an outer diameter of the focus ring to a mesa inner diameter. A shelf steps downwards from a mesa surface at the mesa inner diameter, and extends between the mesa inner diameter and an inner diameter of the focus ring. The shelf is configured to support at least a portion of a wafer bottom surface of the wafer at a process temperature.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 18, 2023
    Assignee: Lam Research Corporation
    Inventors: Geoffrey Hohn, Huatan Qiu, Rachel Batzer, Guangbi Yuan, Zhe Gui
  • Publication number: 20230175134
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 8, 2023
    Inventors: Rachel E. BATZER, Huatan QIU, Bhadri N. VARADARAJAN, Patrick Girard BREILING, Bo GONG, Will SCHLOSSER, Zhe GUI, Taide TAN, Geoffrey HOHN
  • Patent number: 11608559
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 21, 2023
    Assignee: Lam Research Corporation
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Publication number: 20230002891
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Publication number: 20220275504
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Patent number: 11365479
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 21, 2022
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20220145459
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Bhadri N. VARADARAJAN, Bo GONG, Rachel E. BATZER, Huatan QIU, Bart J. VAN SCHRAVENDIJK, Geoffrey HOHN
  • Publication number: 20210371982
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Rachel BATZER, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Patent number: 11101164
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: August 24, 2021
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Publication number: 20200347497
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Patent number: 10760158
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
  • Patent number: 10604841
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum including an inlet to receive heat transfer fluid and a plurality of flow channels to direct the heat transfer fluid through a center portion of the showerhead to an outlet to control a temperature of the showerhead, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: March 31, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Publication number: 20190185999
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: April 16, 2018
    Publication date: June 20, 2019
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20180251893
    Abstract: An assembly for use in a process chamber for depositing a film on a wafer. The assembly includes a pedestal having a pedestal top surface extending from a central axis of the pedestal to an outer edge, the pedestal top surface having a plurality of wafer supports for supporting a wafer. A pedestal step having a step surface extending from a step inner diameter towards the outer edge of the pedestal. A focus ring rests on the step surface and having a mesa extending from an outer diameter of the focus ring to a mesa inner diameter. A shelf steps downwards from a mesa surface at the mesa inner diameter, and extends between the mesa inner diameter and an inner diameter of the focus ring. The shelf is configured to support at least a portion of a wafer bottom surface of the wafer at a process temperature.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: Geoffrey Hohn, Huatan Qiu, Rachel Batzer, Guangbi Yuan, Zhe Gui
  • Publication number: 20180163305
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum including an inlet to receive heat transfer fluid and a plurality of flow channels to direct the heat transfer fluid through a center portion of the showerhead to an outlet to control a temperature of the showerhead, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Publication number: 20180044791
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. van Schravendijk, Geoffrey Hohn
  • Patent number: 9828672
    Abstract: Methods and apparatus for remote plasma processing are provided. In various embodiments, a reaction chamber is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs within the reaction chamber when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 28, 2017
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. van Schravendijk, Geoffrey Hohn