Patents by Inventor Geoffrey Lalonde

Geoffrey Lalonde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230068703
    Abstract: A system for estimating a spacing profile for a road agent includes a first module and a second module. The first module includes instructions that cause one or more processors to receive data related to characteristics of the road agent and road agent behavior detected in an environment of an autonomous vehicle, initiate an analysis of the road agent behavior, and estimate the spacing profile of the road agent as part of the analysis. The spacing profile includes a lateral gap preference and predicted behaviors of the road agent related to changes in lateral gap. The second module includes instructions that cause the one or more processors to determine one or more components of autonomous vehicle maneuver based on the estimated spacing profile and send control instructions for performing the autonomous vehicle maneuver.
    Type: Application
    Filed: October 26, 2021
    Publication date: March 2, 2023
    Applicant: Waymo LLC
    Inventors: Tirthkumar Nilaykumar Pandya, Eric Deng, Chinmayee Shah, Jared Stephen Russell, Geoffrey Lalonde, Anne Hobbs Dorsey
  • Patent number: 11262200
    Abstract: Systems and methods related to roadmaps for robotic devices are provided. A computing device can receive a roadmap representing a plurality of paths through an environment. The computing device can discretize the roadmap to obtain a discrete planning graph having a plurality of states corresponding to discretized segments of the plurality of paths of the roadmap such that states corresponding to adjacent discretized path segments are connected in the discrete planning graph. The computing device can determine a Boolean equation representing at least a portion of the discrete planning graph. The computing device can determine a sequence of states from the plurality of states of the discrete planning graph such that the determined sequence of states satisfies the Boolean equation. The computing device can provide a route through the environment for a robotic device based on the determined sequence of states.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 1, 2022
    Assignee: Intrinsic Innovation LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Patent number: 11161238
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 2, 2021
    Assignee: Intrinsic Innovation LLC
    Inventors: Geoffrey Lalonde, Peter Elving Anderson-Sprecher
  • Patent number: 11145206
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can determine a roadmap that includes a first intersection associated with first and second edges. The computing device can determine an edge interaction region (EIR) surrounding the first intersection that includes portions of the first and second edges, where a traversal region on the first edge portion can overlap a traversal region on the second edge portion. The computing device can determine first and second sub-edges of the first edge; the first sub-edge within the EIR and the second sub-edge outside the EIR. The computing device can receive a request to determine a route, determine the route specifying travel along the first sub-edge with a first rule set and along the second sub-edge with a second rule set, and provide the route.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: October 12, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: Jared Russell, Geoffrey Lalonde
  • Patent number: 10994418
    Abstract: Systems and methods related to roadmaps for mobile robots are provided. A computing device can determine a roadmap of an environment. The roadmap can include lanes and a designated region that is adjacent to a first lane of the plurality of lanes and suitable for robotic traversal when unoccupied. The computing device can determine a first route between first and second points in the environment that uses the first lane. The computing device can send a direction to use the first route to a first robot. The computing device can receive, from the first robot, sensor data indicative of an occupied status of the designated region. The computing device can determine a second route between the first and second points through the designated region based on the occupied status of the designated region. The computing device can send a direction to use the second route to a second robot.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: May 4, 2021
    Assignee: X Development LLC
    Inventors: Tatiana Kichkaylo, Geoffrey Lalonde
  • Patent number: 10926410
    Abstract: A method includes receiving first and second coordinated paths for first and second robotic devices. The first coordinated path comprises a dependency edge indicating a first position on the first coordinated path and a second position on the second coordinated path. The method also includes determining a first traversable portion extending to a first stopping position before or at the first position on the first coordinated path. The method also includes providing a first instruction to the first robotic device to traverse the first traversable portion; subsequently determining that the second robotic device has passed the second position on the second coordinated path; determining a second traversable portion of the first coordinated path extending to a second stopping position beyond the first position on the first coordinated path; and providing a second instruction to the first robotic device to traverse the second traversable portion.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: February 23, 2021
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20200041274
    Abstract: Systems and methods related to roadmaps for robotic devices are provided. A computing device can receive a roadmap representing a plurality of paths through an environment. The computing device can discretize the roadmap to obtain a discrete planning graph having a plurality of states corresponding to discretized segments of the plurality of paths of the roadmap such that states corresponding to adjacent discretized path segments are connected in the discrete planning graph. The computing device can determine a Boolean equation representing at least a portion of the discrete planning graph. The computing device can determine a sequence of states from the plurality of states of the discrete planning graph such that the determined sequence of states satisfies the Boolean equation. The computing device can provide a route through the environment for a robotic device based on the determined sequence of states.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20190351553
    Abstract: A method includes receiving first and second coordinated paths for first and second robotic devices. The first coordinated path comprises a dependency edge indicating a first position on the first coordinated path and a second position on the second coordinated path. The method also includes determining a first traversable portion extending to a first stopping position before or at the first position on the first coordinated path. The method also includes providing a first instruction to the first robotic device to traverse the first traversable portion; subsequently determining that the second robotic device has passed the second position on the second coordinated path; determining a second traversable portion of the first coordinated path extending to a second stopping position beyond the first position on the first coordinated path; and providing a second instruction to the first robotic device to traverse the second traversable portion.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Patent number: 10480947
    Abstract: Systems and methods related to roadmaps for robotic devices are provided. A computing device can receive a roadmap representing a plurality of paths through an environment. The computing device can discretize the roadmap to obtain a discrete planning graph having a plurality of states corresponding to discretized segments of the plurality of paths of the roadmap such that states corresponding to adjacent discretized path segments are connected in the discrete planning graph. The computing device can determine a Boolean equation representing at least a portion of the discrete planning graph. The computing device can determine a sequence of states from the plurality of states of the discrete planning graph such that the determined sequence of states satisfies the Boolean equation. The computing device can provide a route through the environment for a robotic device based on the determined sequence of states.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 19, 2019
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20190291267
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Inventors: Geoffrey Lalonde, Peter Elving Anderson-Sprecher
  • Patent number: 10406687
    Abstract: A method includes receiving first and second coordinated paths for first and second robotic devices. The first coordinated path comprises a dependency edge indicating a first position on the first coordinated path and a second position on the second coordinated path. The method also includes determining a first traversable portion extending to a first stopping position before or at the first position on the first coordinated path. The method also includes providing a first instruction to the first robotic device to traverse the first traversable portion; subsequently determining that the second robotic device has passed the second position on the second coordinated path; determining a second traversable portion of the first coordinated path extending to a second stopping position beyond the first position on the first coordinated path; and providing a second instruction to the first robotic device to traverse the second traversable portion.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: September 10, 2019
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Patent number: 10363657
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: July 30, 2019
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20190176328
    Abstract: Systems and methods related to roadmaps for mobile robots are provided. A computing device can determine a roadmap of an environment. The roadmap can include lanes and a designated region that is adjacent to a first lane of the plurality of lanes and suitable for robotic traversal when unoccupied. The computing device can determine a first route between first and second points in the environment that uses the first lane. The computing device can send a direction to use the first route to a first robot. The computing device can receive, from the first robot, sensor data indicative of an occupied status of the designated region. The computing device can determine a second route between the first and second points through the designated region based on the occupied status of the designated region. The computing device can send a direction to use the second route to a second robot.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Tatiana Kichkaylo, Geoffrey Lalonde
  • Patent number: 10296012
    Abstract: A computing device can determine a roadmap having a path for a robotic device in an environment associated with starting and ending poses. The computing device can generate a plurality of trajectories from the starting pose, where each trajectory can include a steering position and a traction velocity directing the robotic device during a planning time interval. For each trajectory of the plurality of trajectories, the computing device can determine a score for the trajectory indicative of advancement from the starting pose toward the ending pose after simulating the steering position and the traction velocity for the planning time interval. The computing device can select, and then store, a nominal trajectory from among the scored plurality of trajectories. The computing device can receive a first request to provide a route though the environment and can send a first response that includes the stored nominal trajectory.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 21, 2019
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20180321675
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can determine a roadmap that includes a first intersection associated with first and second edges. The computing device can determine an edge interaction region (EIR) surrounding the first intersection that includes portions of the first and second edges, where a traversal region on the first edge portion can overlap a traversal region on the second edge portion. The computing device can determine first and second sub-edges of the first edge; the first sub-edge within the EIR and the second sub-edge outside the EIR. The computing device can receive a request to determine a route, determine the route specifying travel along the first sub-edge with a first rule set and along the second sub-edge with a second rule set, and provide the route.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 8, 2018
    Inventors: Jared Russell, Geoffrey Lalonde
  • Patent number: 10107632
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can receive a roadmap. The roadmap can include an intersection between first and second edges. The computing device can determine a transition curve between the first and second edges and includes first, second, and third curve segments. The first and second curve segments can connect at a first curve junction point. The second and third curve segments can connect at a second curve junction point. The first and third curve segments each include a segment of an Euler spiral and the second curve segment can be a circular curve segment having a fixed radius. The computing device can update the roadmap by replacing the intersection between the first and second edges with the transition curve. The computing device can provide the updated roadmap.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: October 23, 2018
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20180224282
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can receive a roadmap. The roadmap can include an intersection between first and second edges. The computing device can determine a transition curve between the first and second edges and includes first, second, and third curve segments. The first and second curve segments can connect at a first curve junction point. The second and third curve segments can connect at a second curve junction point. The first and third curve segments each include a segment of an Euler spiral and the second curve segment can be a circular curve segment having a fixed radius. The computing device can update the roadmap by replacing the intersection between the first and second edges with the transition curve. The computing device can provide the updated roadmap.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 9, 2018
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Patent number: 10037029
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can determine a roadmap that includes a first intersection associated with first and second edges. The computing device can determine an edge interaction region (EIR) surrounding the first intersection that includes portions of the first and second edges, where a traversal region on the first edge portion can overlap a traversal region on the second edge portion. The computing device can determine first and second sub-edges of the first edge; the first sub-edge within the EIR and the second sub-edge outside the EIR. The computing device can receive a request to determine a route, determine the route specifying travel along the first sub-edge with a first rule set and along the second sub-edge with a second rule set, and provide the route.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 31, 2018
    Assignee: X Development LLC
    Inventors: Jared Russell, Geoffrey Lalonde
  • Publication number: 20180178382
    Abstract: A method includes receiving first and second coordinated paths for first and second robotic devices. The first coordinated path comprises a dependency edge indicating a first position on the first coordinated path and a second position on the second coordinated path. The method also includes determining a first traversable portion extending to a first stopping position before or at the first position on the first coordinated path. The method also includes providing a first instruction to the first robotic device to traverse the first traversable portion; subsequently determining that the second robotic device has passed the second position on the second coordinated path; determining a second traversable portion of the first coordinated path extending to a second stopping position beyond the first position on the first coordinated path; and providing a second instruction to the first robotic device to traverse the second traversable portion.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Publication number: 20180178376
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher