Patents by Inventor Georg Fink

Georg Fink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220243643
    Abstract: The invention relates to an HPDF operation method for an internal combustion engine (100) with internal formation of a mixture and self-ignition, in which, (i) for a combustion cycle of an operation cycle under high pressure, as main fuel (63) at a first time point, the introduction of a nonself-igniting or gasoline engine fuel, and as ignition fuel (64) at a second time point, the introduction of a self-igniting or diesel fuel into a combustion chamber (20) of the internal combustion engine (1) are at least initiated and/or performed, (ii) a self-ignition of the ignition fuel (64) and with the self-ignition a nonself-ignition of the main fuel (63) are effected, and (iii) the self-ignition of the ignition fuel (64) is performed temporally and/or spatially in such a way that the main fuel (63) is ignited at a location (1) and/or in a region of an jet tip (630 and/or a propagation front (630 of a quantity of introduced main fuel (63)—in particular temporally firstly.
    Type: Application
    Filed: June 2, 2020
    Publication date: August 4, 2022
    Inventors: Michael JUD, Georg FINK
  • Patent number: 11075102
    Abstract: The invention relates to a positioning device for positioning a substrate, in particular a wafer, comprising: a process chamber; a base body; a carrier element which comprises a support for supporting the substrate, the carrier element being arranged above the base body and formed movable in terms of distance from the base body; and a holder for an additional substrate, in particular an additional wafer or a mask, the holder being arranged opposite the carrier element; wherein there is, between the base body and the carrier element, a sealed-off cavity to which a pressure, in particular a negative pressure, can be applied so as to prevent undesired movement of the carrier element as a result of the action of an external force.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 27, 2021
    Assignee: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: Sven Hansen, Georg Fink, Henrik Petry
  • Publication number: 20200353650
    Abstract: A stamp replication device for producing stamps for the production of at least one of microstructured and nanostructured components has a platform, a cover that is positionable on the platform and a holding device for a stamp carrier, wherein the holding device is provided on the cover or on the platform and includes a carrier as well as a microstructured vacuum surface on the carrier for holding the stamp carrier. In addition, a method for producing a holding device for a stamp replication device as well as a method for producing a stamp are specified.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 12, 2020
    Inventors: Uwe VOGLER, Fabian PAWLITZEK, Georg FINK, Christian MAY, Ghazahleh JALALI
  • Publication number: 20180138070
    Abstract: The invention relates to a positioning device for positioning a substrate, in particular a wafer, comprising: a process chamber; a base body; a carrier element which comprises a support for supporting the substrate, the carrier element being arranged above the base body and formed movable in terms of distance from the base body; and a holder for an additional substrate, in particular an additional wafer or a mask, the holder being arranged opposite the carrier element; wherein there is, between the base body and the carrier element, a sealed-off cavity to which a pressure, in particular a negative pressure, can be applied so as to prevent undesired movement of the carrier element as a result of the action of an external force.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 17, 2018
    Inventors: Sven Hansen, Georg Fink, Henrik Petry
  • Patent number: 9933103
    Abstract: An apparatus for sealing a leak from a tubular member has a channel member with at least one open end, a sealing member positioned in an interior of the channel member and having a channel extending therethrough, and a compression assembly having a portion extending through the channel of the sealing member. The compression assembly also has a rotatable element extending outwardly of the channel of the sealing member. The rotatable element is rotatable so as to compress or deform the sealing material within the interior of the channel member so as to seal the leak. A tape material is wrapped over the channel member so as to fix a position of the channel member over the leak.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 3, 2018
    Assignee: TECHNOFINK LLC
    Inventor: Thomas Georg Fink
  • Publication number: 20180087706
    Abstract: An apparatus for sealing a leak from a tubular member has a channel member with at least one open end, a sealing member positioned in an interior of the channel member and having a channel extending therethrough, and a compression assembly having a portion extending through the channel of the sealing member. The compression assembly also has a rotatable element extending outwardly of the channel of the sealing member. The rotatable element is rotatable so as to compress or deform the sealing material within the interior of the channel member so as to seal the leak. A tape material is wrapped over the channel member so as to fix a position of the channel member over the leak.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 29, 2018
    Inventor: Thomas Georg FINK
  • Patent number: 9657180
    Abstract: A coating composition for application to a subsea component or structure has cellulose acetate an amount of approximately 47% by weight of the total composition, diisooctyl phthalate in an amount of approximately 17% by weight of the total composition, a fatty acid ester in an amount of approximately 23% by weight of the total composition, a vegetable oil in an amount of approximately 8% by weight of the total composition, a stabilizer and a silica amorphous in which the stabilizer and the silica amorphous are in amount of approximately 5% by weight of the total composition. The stabilizer can be either titanium dioxide or aluminum dioxide. The vegetable oil is canola oil.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: May 23, 2017
    Assignee: OXIFREE GLOBAL LIMITED
    Inventors: Thomas Georg Fink, Edward Hall
  • Publication number: 20160230022
    Abstract: A coating composition for application to a subsea component or structure has cellulose acetate an amount of approximately 47% by weight of the total composition, diisooctyl phthalate in an amount of approximately 17% by weight of the total composition, a fatty acid ester in an amount of approximately 23% by weight of the total composition, a vegetable oil in an amount of approximately 8% by weight of the total composition, a stabilizer and a silica amorphous in which the stabilizer and the silica amorphous are in amount of approximately 5% by weight of the total composition. The stabilizer can be either titanium dioxide or aluminum dioxide. The vegetable oil is canola oil.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 11, 2016
    Applicant: OXIFREE GLOBAL LIMITED
    Inventors: Thomas Georg FINK, Edward HALL
  • Patent number: 9329473
    Abstract: The invention relates to a method and device for expanding the travel or control displacement of linear actuators that is available during an imprinting or embossing stroke. The wedge error compensating head (2) comprises a movable part (4), a stationary part (3) and at least three linear actuators (8). Each linear actuator (8) is connected to one of the parts (3, 4) at one end and to the other of the two parts (4, 3) by wedges (9) at the other end. By means of the wedges (9), it is possible to coarsely or roughly compensate for wedge errors and possible tolerances of individual subcomponents of the system. The linear actuators (8) are only used for fine or precision compensation for the wedge error. In this way, sufficient control displacement is available for the imprinting stroke with the linear actuators.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 3, 2016
    Assignee: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: Sven Hansen, Matthias Conradi, Georg Fink
  • Patent number: 9267040
    Abstract: A coating composition for application to a subsea component or structure has cellulose acetate an amount of approximately 47% by weight of the total composition, diisooctyl phthalate in an amount of approximately 17% by weight of the total composition, a fatty acid ester in an amount of approximately 23% by weight of the total composition, a vegetable oil in an amount of approximately 8% by weight of the total composition, a stabilizer and a silica amorphous in which the stabilizer and the silica amorphous are in amount of approximately 5% by weight of the total composition. The stabilizer can be either titanium dioxide or aluminum dioxide. The vegetable oil is canola oil.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: February 23, 2016
    Assignee: OXIFREE HOLDINGS CORP
    Inventors: Thomas Georg Fink, Edward Hall
  • Publication number: 20150225571
    Abstract: A coating composition for application to a subsea component or structure has cellulose acetate an amount of approximately 47% by weight of the total composition, diisooctyl phthalate in an amount of approximately 17% by weight of the total composition, a fatty acid ester in an amount of approximately 23% by weight of the total composition, a vegetable oil in an amount of approximately 8% by weight of the total composition, a stabilizer and a silica amorphous in which the stabilizer and the silica amorphous are in amount of approximately 5% by weight of the total composition. The stabilizer can be either titanium dioxide or aluminum dioxide. The vegetable oil is canola oil.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 13, 2015
    Applicant: OXIFREE HOLDINGS CORP (A corporation of Panama)
    Inventors: Thomas Georg FINK, Edward HALL
  • Patent number: 8772390
    Abstract: A method of applying a protective polymeric coating to a substrate has the steps of mixing a cellulose acetate buterate and a plasticizer and a corrosion inhibitor together to form a solid mixture, heating the solid mixture so as to form a liquid state, painting the substrate with the liquid state, and drying the liquid state on the substrate for a period of time. The step of painting can include spraying the liquid state of the mixture onto the substrate. The plasticizer is an epoxidized fatty acid ester. The corrosion inhibitor is epoxidized canola oil. Additionally, epoxidized soil bean oil, silica amorphous and titanium dioxide can be mixed together.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: July 8, 2014
    Assignee: Oxifree Holdings Corp
    Inventors: Thomas Georg Fink, Emilio Cesar Castro
  • Publication number: 20120299208
    Abstract: The invention relates to a method and device for expanding the travel or control displacement of linear actuators that is available during an imprinting or embossing stroke. The wedge error compensating head (2) comprises a movable part (4), a stationary part (3) and at least three linear actuators (8). Each linear actuator (8) is connected to one of the parts (3, 4) at one end and to the other of the two parts (4, 3) by wedges (9) at the other end. By means of the wedges (9), it is possible to coarsely or roughly compensate for wedge errors and possible tolerances of individual subcomponents of the system. The linear actuators (8) are only used for fine or precision compensation for the wedge error. In this way, sufficient control displacement is available for the imprinting stroke with the linear actuators.
    Type: Application
    Filed: February 14, 2011
    Publication date: November 29, 2012
    Inventors: Sven Hansen, Matthias Conradi, Georg Fink