Patents by Inventor George B. Goodwin

George B. Goodwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11754764
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: September 12, 2023
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Publication number: 20220075105
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 10, 2022
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Publication number: 20220009138
    Abstract: A mold for casting a polymeric aircraft window panel includes a first mold half having a first mold surface, and a second mold half having a second mold surface. The first mold surface and/or the second mold surface have a shape conforming to a final shape for the major surfaces of the aircraft window panel. The first mold half and/or the second mold half can be formed of rolled, hydroformed, or stamped metal.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 13, 2022
    Inventors: George B. Goodwin, Dennis P. McCarthy, John D. M. Shearer
  • Patent number: 11150389
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: October 19, 2021
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Patent number: 11110634
    Abstract: A mold for casting a polymeric aircraft window panel includes a first mold half (12) having a first mold surface (24), and a second mold half (14) having a second mold surface (50). The first mold surface (24) and/or the second mold surface (50) have a shape conforming to a final shape for the major surfaces of the aircraft window panel. The first mold half (12) and/or the second mold half (14) can be formed of rolled, hydroformed, or stamped metal.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 7, 2021
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Dennis P. McCarthy, John D. M. Shearer
  • Publication number: 20200283330
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: February 4, 2020
    Publication date: September 10, 2020
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Patent number: 10613304
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: April 7, 2020
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Publication number: 20190101733
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 4, 2019
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Patent number: 10202302
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt. %, more preferably 0.001-0.010 wt. %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-0.10. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt. % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 12, 2019
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak, Calvin B. Blevins, James V. Hartmann
  • Patent number: 10202183
    Abstract: An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). In a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: February 12, 2019
    Assignee: PPG industries Ohio, Inc.
    Inventors: Dennis P. McCarthy, Calvin B. Blevins, Caroline S. Harris, George B. Goodwin, YaBei Gu
  • Patent number: 10191256
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 29, 2019
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Publication number: 20170227743
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 10, 2017
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Patent number: 9658437
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 23, 2017
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Publication number: 20170100865
    Abstract: A mold for casting a polymeric aircraft window panel includes a first mold half (12) having a first mold surface (24), and a second mold half (14) having a second mold surface (50). The first mold surface (24) and/or the second mold surface (50) have a shape conforming to a final shape for the major surfaces of the aircraft window panel. The first mold half (12) and/or the second mold half (14) can be formed of rolled, hydroformed, or stamped metal.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 13, 2017
    Inventors: George B. Goodwin, Dennis P. McCarthy, John D. M. Shearer
  • Patent number: 9359808
    Abstract: An insulating unit includes a first spacer frame between first and second sheets, e.g. glass sheets, and a second spacer frame between the second sheet and a third sheet. A first surface of the first spacer frame is adhered to inner surface of the first sheet, and an opposite second surface of the first spacer frame is adhered to a first surface of the second sheet, by a moisture impervious adhesive layer. A first outer surface of the second spacer frame is adhered to a second surface of the second sheet, and an opposite second outer surface of the second spacer frame is adhered to an inner surface of the third sheet, by the adhesive layer. The first spacer frame and the second spacer frame have an offset of greater than zero.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 7, 2016
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Michael J. Buchanan
  • Publication number: 20150246842
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt. %, more preferably 0.001-0.010 wt. %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-0.10. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt. % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 3, 2015
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak, Calvin B. Blevins, James V. Hartmann
  • Publication number: 20150047275
    Abstract: An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). in a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 19, 2015
    Inventors: Dennis P. McCarthy, Calvin B. Blevins, Caroline S. Harris, George B. Goodwin, YaBei Gu
  • Publication number: 20140087098
    Abstract: An insulating unit includes a first spacer frame between first and second sheets, e.g. glass sheets, and a second spacer frame between the second sheet and a third sheet. A first surface of the first spacer frame is adhered to inner surface of the first sheet, and an opposite second surface of the first spacer frame is adhered to a first surface of the second sheet, by a moisture impervious adhesive layer. A first outer surface of the second spacer frame is adhered to a second surface of the second sheet, and an opposite second outer surface of the second spacer frame is adhered to an inner surface of the third sheet, by the adhesive layer. The first spacer frame and the second spacer frame have an offset of greater than zero.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: George B. Goodwin, Michael J. Buchanan
  • Patent number: 8062749
    Abstract: An aircraft transparency in a glass piece, wherein the glass piece includes a chemically tempered first major surface and a chemically tempered opposite second major surface, a first case depth begins at the first major surface, a second case depth begins at the second major surface, and a tensile stress zone is within the glass piece between the end points of the first and the second case depths. The glass between the end points of the first and second case depth has a glass composition including: Ingredient Percent by weight SiO2 60 to 75; Al2O3 18 to 28; and Li2O 3 to 9, and the glass has at least one of the following properties (a) a log 10 viscosity temperature of at least 1413° F. and (b) a liquidus temperature of at least 2436° F.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 22, 2011
    Assignee: PPG Industries Ohio, Inc
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Publication number: 20110079048
    Abstract: A glass composition for chemical tempering includes oxides in wt % ranges of: SiO2 60 to 75; Al2O3 18 to 28; Li2O 3 to 9; Na2O 0 to 3; K2O 0 to 0.5; CaO 0 to 3; MgO 0 to 3; ZrO2 0 to 3; where MgO+CaO is 0 to 6 wt %; Al2O3+ZrO2 is 18 to 28 wt %, and Na2O+K2O is 0.05 to 3.00 wt %. The glass has a log 10 viscosity temperature in the temperature range of 1328° F. (720° C.) to 1499° F. (815° C.); a liquidus temperature in the temperature range of 2437° F. (1336° C.) to 2575° F. (1413° C.), and a log 7.6 softening point temperature in the temperature range of 1544° F. (840° C.) to 1724° F. (940° C.). The chemically tempered glass has, among other properties, an abraded modulus of rupture of 72 to 78 KPSI, and a modulus of rupture of 76 to 112 KPSI.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Applicant: SCHOTT AG
    Inventors: LARRY J. SHELESTAK, GEORGE B. GOODWIN, AMARENDRA MISHRA, JAMES M. BALDAUFF