Patents by Inventor George Fotou

George Fotou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9463551
    Abstract: Disclosed is a polishing pad for chemical-mechanical polishing. The polishing pad has a porous interface and a substantially non-porous bulk core. Also disclosed are related apparatus and methods for using and preparing the polishing pad.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: October 11, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Robert Vacassy, George Fotou
  • Publication number: 20150056892
    Abstract: Disclosed is a polishing pad for chemical-mechanical polishing. The polishing pad has a porous interface and a substantially non-porous bulk core. Also disclosed are related apparatus and methods for using and preparing the polishing pad.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 26, 2015
    Inventors: Robert VACASSY, George FOTOU
  • Publication number: 20150056895
    Abstract: The invention provides a polishing pad for chemical-mechanical polishing comprising a porous polymeric material, wherein the polishing pad comprises closed pores and wherein the polishing pad has a void volume fraction of 70% or more. Also disclosed is a method for preparing the aforesaid polishing pad and a method of polishing a substrate by use of theaforesaid polishing pad.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Inventors: George Fotou, Achla Khanna, Robert Vacassy
  • Patent number: 8080495
    Abstract: A catalyst composition comprises a particulate support and catalyst nanoparticles on the particulate support. The catalyst nanoparticles comprise an alloy of platinum and palladium in an atomic ratio of from about 25:75 to about 75:25 and are present in a concentration of between about 3 and about 10 wt % weight percent of the catalyst composition. The catalyst composition has an X-ray diffraction pattern that is substantially free of the (311) diffraction peak assignable to PtxPd1-x, where 0.25?x?0.75.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 20, 2011
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Ranko P Bontchev, Paolina Atanassova, Berislav Blizanac, Yipeng Sun, Matthew Ezenyilimba, George Fotou, Kenneth Koehlert
  • Patent number: 8058195
    Abstract: The invention is to processes for producing a nanoglass powder batches and to powder batches formed by such processes. In one embodiment, the process comprises the steps of providing a precursor medium comprising a first metal oxide precursor to a first metal oxide, a second metal oxide precursor to a second metal oxide, and a liquid vehicle; and flame spraying the precursor medium under conditions effective to form aggregated nanoglass particles comprising the first and second metal oxides, wherein the aggregated nanoglass particles have an average primary particle size of from 25 nm to 500 nm. The aggregated nanoglass particles preferably have an average aggregate particle size of from 50 nm to 1000 nm and may be amorphous or crystalline.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Cabot Corporation
    Inventors: George Fotou, Mark Hampden-Smith, Mark Kowalski, Hyungrak Kim, Toivo Kodas, Ned Hardman
  • Publication number: 20110245073
    Abstract: A catalyst composition comprises a particulate support and catalyst nanoparticles on the particulate support. The catalyst nanoparticles comprise an alloy of platinum and palladium in an atomic ratio of from about 25:75 to about 75:25 and are present in a concentration of between about 3 and about 10 wt % weight percent of the catalyst composition. The catalyst composition has an X-ray diffraction pattern that is substantially free of the (311) diffraction peak assignable to PtxPd1-x, where 0.25?x?0.75.
    Type: Application
    Filed: August 6, 2010
    Publication date: October 6, 2011
    Applicant: CABOT CORPORATION
    Inventors: Miodrag OLJACA, Ranko P. BONTCHEV, Paolina ATANASSOVA, Berislav BLIZANAC, Yipeng SUN, Matthew EZENYILIMBA, George FOTOU, Kenneth C. Koehlert
  • Publication number: 20080318757
    Abstract: The invention is to processes for producing a nanoglass powder batches and to powder batches formed by such processes. In one embodiment, the process comprises the steps of providing a precursor medium comprising a first metal oxide precursor to a first metal oxide, a second metal oxide precursor to a second metal oxide, and a liquid vehicle; and flame spraying the precursor medium under conditions effective to form aggregated nanoglass particles comprising the first and second metal oxides, wherein the aggregated nanoglass particles have an average primary particle size of from 25 nm to 500 nm. The aggregated nanoglass particles preferably have an average aggregate particle size of from 50 nm to 1000 nm and may be amorphous or crystalline.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 25, 2008
    Applicant: CABOT CORPORATION
    Inventors: George FOTOU, Mark HAMPDEN-SMITH, Mark KOWALSKI, Hyungrak KIM, Toivo KODAS, Ned HARDMAN
  • Publication number: 20070253884
    Abstract: The invention provides a process for the production of fumed silica. The process comprises providing a silicon halide feedstock comprising about 80% to 100% methyltrichlorosilane, combining the silicon halide feedstock with hydrogen gas and oxygen gas to form a reactant mixture, discharging the reactant mixture out of a burner, and combusting the hydrogen gas and the oxygen gas of the reactant mixture so as to hydrolyze the silicon halide feedstock to produce fumed silica. Hydrogen (H2) is present in a mole fraction of about 0.11 or less based on the reactant mixture, and/or the velocity of the reactant mixture upon exiting the burner is about 25 m/s or more.
    Type: Application
    Filed: April 25, 2007
    Publication date: November 1, 2007
    Applicant: Cabot Corporation
    Inventors: Joanne Liu, Yakov Kutsovsky, George Fotou
  • Publication number: 20060162497
    Abstract: In one aspect, the process includes providing a precursor medium comprising a liquid vehicle and a precursor to a component, and flame spraying the precursor medium under conditions effective to form a population of nanoparticles, wherein the nanoparticles include the component. The population of nanoparticles, as formed, comprises less than about 5 percent by volume particles having a particle size greater than 1.0 ?m. A size distribution of the population of nanoparticles may have a d50 value less than about 500 nm, and it may be unimodal. The size distribution may have a geometric standard deviation of less than about 2. The process may occur continuously for at least four hours or more. Greater than about 90 percent by weight of the precursor to the component in the precursor medium may be converted to the component in the nanoparticles. The process typically occurs in an enclosed flame spray reactor.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 27, 2006
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, George Fotou, Miodrag Oljaca, Ned Hardman, Prakash Kumar
  • Publication number: 20060165898
    Abstract: The invention relates to a process for decreasing flame temperature in a flame spray reaction system, the process comprising the steps of providing a precursor medium comprising a precursor to a component; flame spraying the precursor medium under conditions effective to form a population of product particles; and decreasing the flame temperature by contacting the flame with a cooling medium. The process of the present invention allows for the control of the size, composition and morphology of the nanoparticles made using the process. The invention also relates to a nozzle assembly that comprises a substantially longitudinally extending atomizing feed nozzle that comprises an atomizing medium conduit and one or more substantially longitudinally extending precursor medium feed conduits. The nozzle assembly of the present invention is used in a flame spray system to produce nanoparticles using the processes described herein.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 27, 2006
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, George Fotou, Miodrag Oljaca, Ned Jay Hardman, Prakash Kumar
  • Publication number: 20060166057
    Abstract: The present invention relates to a method of making nanoparticulates in a flame reactor, the nanoparticulates having controlled properties such as weight average particle size, composition and morphology. The nanoparticulates made with the method of present invention may be tailored to a specific weight average particle size range, such as from about 1 nm to about 500 nm. In addition to weight average particle size, the nanoparticulates made with the method of the present invention may include a variety of materials including metals, ceramics, organic materials, and combinations thereof. Moreover, the method of the present invention allows control over the morphology of the nanoparticulates, which allows the production of nanoparticulates with any desired morphology including spheroidal and unagglomerated; and agglomerated (aggregated) into larger units of hard aggregates.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 27, 2006
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, David Dericotte, George Fotou
  • Publication number: 20060165910
    Abstract: In a first aspect, the process includes utilizing a precursor medium comprising particles and a nongaseous precursor to form product nanoparticles having a core/shell structure. In another aspect, the process includes utilizing an emulsion precursor medium comprising a nongaseous precursor and two liquid vehicles, wherein one of the liquid vehicles provides desirable thermal effects upon combustion. In another aspect the flame spray process includes modifying solid particles in a flame spray process to change the phase thereof.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 27, 2006
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, George Fotou, Miodrag Oljaca, Ned Hardman, Prakash Kumar
  • Publication number: 20060039846
    Abstract: The present invention provides a cerium oxide particulate composition and a process for preparing a cerium oxide particulate composition comprising aggregates of approximately spherical primary particles of cerium oxide. The method involves preparing a solution of a cerium oxide precursor, aerosolizing the cerium oxide precursor solution, and heating the aerosol to provide the cerium oxide particle composition.
    Type: Application
    Filed: May 2, 2005
    Publication date: February 23, 2006
    Inventors: Cheng-Hung Hung, Joseph Smith, George Fotou, Kenneth Koehlert
  • Publication number: 20060034745
    Abstract: The present invention provides a cerium oxide particulate composition and a process for preparing a cerium oxide particulate composition comprising aggregates of approximately spherical primary particles of cerium oxide. The method involves preparing a solution of a cerium oxide precursor, aerosolizing the cerium oxide precursor solution, and heating the aerosol to provide the cerium oxide particle composition.
    Type: Application
    Filed: May 2, 2005
    Publication date: February 16, 2006
    Inventors: Cheng-Hung Hung, Joseph Smith, George Fotou, Kenneth Koehlert