Patents by Inventor George S Tulevski

George S Tulevski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150348667
    Abstract: A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The nanotube-graphene hybrid film includes a substrate; nanotube film deposited over the substrate to produce a layer of nanotube film; and graphene deposited over the layer of nanotube film to produce a nanotube-graphene hybrid film.
    Type: Application
    Filed: August 6, 2015
    Publication date: December 3, 2015
    Inventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski
  • Publication number: 20150340617
    Abstract: A nanotube-graphene hybrid nano-component and method for forming a cleaned nanotube-graphene hybrid nano-component. The nanotube-graphene hybrid nano-component includes a gate; a gate dielectric formed on the gate; a channel comprising a carbon nanotube-graphene hybrid nano-component formed on the gate dielectric; a source formed over a first region of the carbon nanotube-graphene hybrid nano-component; and a drain formed over a second region of the carbon nanotube-graphene hybrid nano-component to form a field effect transistor.
    Type: Application
    Filed: August 6, 2015
    Publication date: November 26, 2015
    Inventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski
  • Patent number: 9177688
    Abstract: A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 3, 2015
    Assignees: International Business Machines Corporation, Egypt Nanotechnology Center
    Inventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski
  • Publication number: 20150302950
    Abstract: Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
    Type: Application
    Filed: June 29, 2015
    Publication date: October 22, 2015
    Inventors: Mostafa M. El-Ashry, Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Patent number: 9162883
    Abstract: Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 20, 2015
    Assignees: International Business Machines Corporation, EGYPT NANOTECHNOLOGY CENTER
    Inventors: Mostafa M. El-Ashry, Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Publication number: 20150279733
    Abstract: The present invention relates generally to forming interconnects over contacts and more particularly, to a method and structure for filling interconnect trenches with a sacrificial filler material before removal of a hard mask layer to protect the liners of the contacts from damage during the removal process. A method is disclosed that may include: filling an opening in a dielectric layer above a contact and a contact liner with a sacrificial filler material, such that the contact liner is completely covered by the sacrificial filler material; removing a hard mask layer used to pattern and form the opening; and removing the sacrificial filler material from the opening selective to the dielectric layer, the contact liner, and the contact to form an interconnect trench.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: International Business Machines Corporation
    Inventors: Domingo A. Ferrer, Jim Shih-Chun Liang, Joyeeta Nag, Wei-tsu Tseng, George S. Tulevski
  • Patent number: 9123454
    Abstract: A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 1, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 9105702
    Abstract: A carbon nanotube field-effect transistor is disclosed. The carbon nanotube field-effect transistor includes a first carbon nanotube film, a first gate layer coupled to the first carbon nanotube film and a second carbon nanotube film coupled to the first gate layer opposite the first gate layer. The first gate layer is configured to influence an electric field within the first carbon nanotube film as well as to influence an electric field of the second carbon nanotube film. At least one of a source contact and a drain contact are coupled to the first and second carbon nanotube film and are separated from the first gate layer by an underlap region.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 9099542
    Abstract: A carbon nanotube field-effect transistor is disclosed. The carbon nanotube field-effect transistor includes a first carbon nanotube film, a first gate layer coupled to the first carbon nanotube film and a second carbon nanotube film coupled to the first gate layer opposite the first gate layer. The first gate layer is configured to influence an electric field within the first carbon nanotube film as well as to influence an electric field of the second carbon nanotube film. At least one of a source contact and a drain contact are coupled to the first and second carbon nanotube film and are separated from the first gate layer by an underlap region.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 4, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 9040364
    Abstract: A method of creating a semiconductor device is disclosed. An end of a carbon nanotube is unzipped to provide a substantially flat surface. A contact of the semiconductor device is formed. The substantially flat surface of the carbon nanotube is coupled to the contact to create the semiconductor device. An energy gap in the unzipped end of the carbon nanotube may be less than an energy gap in a region of the carbon nanotube outside of the unzipped end region.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 9029841
    Abstract: A method of creating a semiconductor device is disclosed. An end of a carbon nanotube is unzipped to provide a substantially flat surface. A contact of the semiconductor device is formed. The substantially flat surface of the carbon nanotube is coupled to the contact to create the semiconductor device. An energy gap in the unzipped end of the carbon nanotube may be less than an energy gap in a region of the carbon nanotube outside of the unzipped end region.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 9017813
    Abstract: Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: April 28, 2015
    Assignees: International Business Machines Corporation, Egypt Nanotechnology Center
    Inventors: Mostafa M. El-Ashry, Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Publication number: 20150060275
    Abstract: A technique is provided for forming a nanodevice for sequencing. A bottom metal contact is disposed at a location in an insulator that is on a substrate. A nonconducting material is disposed on top of the bottom metal contact and the insulator. A carbon nanotube is disposed on top of the nonconducting material. Top metal contacts are disposed on top of the carbon nanotube at the location of the bottom metal contact, where the top metal contacts are formed at opposing ends of the carbon nanotube at the location. The carbon nanotube is suspended over the bottom metal contact at the location, by etching away the nonconducting material under the carbon nanotube to expose the bottom metal contact as a bottom of a trench, while leaving the nonconducting material immediately under the top metal contacts as walls of the trench.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Publication number: 20150060283
    Abstract: A technique is provided for forming a nanodevice for sequencing. A bottom metal contact is disposed at a location in an insulator that is on a substrate. A nonconducting material is disposed on top of the bottom metal contact and the insulator. A carbon nanotube is disposed on top of the nonconducting material. Top metal contacts are disposed on top of the carbon nanotube at the location of the bottom metal contact, where the top metal contacts are formed at opposing ends of the carbon nanotube at the location. The carbon nanotube is suspended over the bottom metal contact at the location, by etching away the nonconducting material under the carbon nanotube to expose the bottom metal contact as a bottom of a trench, while leaving the nonconducting material immediately under the top metal contacts as walls of the trench.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Aaron D. Franklin, George S. Tulevski
  • Patent number: 8969115
    Abstract: A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, James B. Hannon, Ning Li, Satoshi Oida, George S. Tulevski, Devendra K. Sadana
  • Patent number: 8968582
    Abstract: A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Patent number: 8912525
    Abstract: A process comprises combining a Ce (IV) salt with a carbon material comprising CNT or graphene wherein the Ce (IV) salt is selected from a Ce (IV) ammonium salt of a nitrogen oxide acid and is dissolved in a solvent comprising water. The process is conducted under conditions to substantially oxidize the carbon material to produce an oxidized material that is substantially non-conducting. After the oxidation, the Ce (IV) is substantially removed from the oxidized material. This produces a product made by the process. An article of manufacture comprises the product on a substrate. The oxidized material can be formed as a pattern on the substrate. In another embodiment the substrate comprises an electronic device with the oxidized material patterning non-conductive areas separate from conductive areas of the non-oxidized carbon material, where the conductive areas are operatively associated with the device.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Patent number: 8785262
    Abstract: Self-aligned carbon nanostructure field effect transistor structures are provided, which are foamed using selective dielectric deposition techniques. For example, a transistor device includes an insulating substrate and a gate electrode embedded in the insulating substrate. A dielectric deposition-prohibiting layer is formed on a surface of the insulating substrate surrounding the gate electrode. A gate dielectric is selectively formed on the gate electrode. A channel structure (such as a carbon nanostructure) is disposed on the gate dielectric A passivation layer is selectively formed on the gate dielectric. Source and drain contacts are formed on opposing sides of the passivation layer in contact with the channel structure. The dielectric deposition-prohibiting layer prevents deposition of dielectric material on a surface of the insulating layer surrounding the gate electrode when selectively forming the gate dielectric and passivation layer.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Shu-Jen Han, George S. Tulevski
  • Patent number: 8786018
    Abstract: Self-aligned carbon nanostructure field effect transistor structures are provided, which are formed using selective dielectric deposition techniques. For example, a transistor device includes an insulating substrate and a gate electrode embedded in the insulating substrate. A dielectric deposition-prohibiting layer is formed on a surface of the insulating substrate surrounding the gate electrode. A gate dielectric is selectively formed on the gate electrode. A channel structure (such as a carbon nanostructure) is disposed on the gate dielectric A passivation layer is selectively formed on the gate dielectric. Source and drain contacts are formed on opposing sides of the passivation layer in contact with the channel structure. The dielectric deposition-prohibiting layer prevents deposition of dielectric material on a surface of the insulating layer surrounding the gate electrode when selectively forming the gate dielectric and passivation layer.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Shu-Jen Han, George S. Tulevski
  • Publication number: 20140196780
    Abstract: A Schottky-barrier-reducing layer is provided between a p-doped semiconductor layer and a transparent conductive material layer of a photovoltaic device. The Schottky-barrier-reducing layer can be a conductive material layer having a work function that is greater than the work function of the transparent conductive material layer. The conductive material layer can be a carbon-material layer such as a carbon nanotube layer or a graphene layer. Alternately, the conductive material layer can be another transparent conductive material layer having a greater work function than the transparent conductive material layer. The reduction of the Schottky barrier reduces the contact resistance across the transparent material layer and the p-doped semiconductor layer, thereby reducing the series resistance and increasing the efficiency of the photovoltaic device.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicants: EGYPT NANOTECHNOLOGY CENTER, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana, George S. Tulevski, Ahmed Abou-Kandil, Hisham S. Mohamed, Mohamed Saad, Osama Tobail