Patents by Inventor Gerald Dale Morrison

Gerald Dale Morrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240095203
    Abstract: A low voltage drive circuit (LVDC) includes a digital to analog input circuit to convert transmit digital data into combined analog outbound data, the transmit digital data has a data rate based on a host input clock, and a first portion of the combined analog outbound data has a first oscillation rate based on a first transmit channel clock and a second portion has a second oscillation rate based on a second transmit channel clock. The LVDC also includes a drive sense circuit to convert the combined analog outbound data into an analog transmit signal that is transmitted on a bus. The LVDC also includes a clock circuit to generate a transmit input clock to synchronize receiving the transmit digital data from a host, generate the first transmit channel clock based on the host input clock, and generate the second transmit channel clock based on the host input clock.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20240096406
    Abstract: A method for execution by a Dynamic Random Access (DRAM) cell processing circuit in a read mode, includes receiving a pre-charge input and charging a bit-line operably coupled to a plurality of DRAM cells of a DRAM memory device, including a current DRAM cell, to a pre-charge voltage. The method continues by sensing a voltage change on the bit-line, where the sensing is based on a difference between a voltage stored on a DRAM cell capacitor of the current DRAM cell and the pre-charge voltage and generating a logic input for one of four voltage states for the current DRAM cell. The method then continues by supplying, supplying, based on the logic input, a corresponding logic voltage on the bit-line to refresh the voltage stored in the DRAM cell capacitor of the current DRAM cell.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, JR., Timothy W. Markison
  • Patent number: 11933607
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Shayne X Short, Timothy W. Markison
  • Patent number: 11935397
    Abstract: A test system includes a test container array including a plurality of test containers and a plurality of electrodes integrated into the test container array. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia A. Markison
  • Patent number: 11922800
    Abstract: A test system includes a testing base including a plurality of testing base containers, and a plurality of electrodes integrated into the plurality of testing base containers. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 5, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia M. Healy
  • Patent number: 11916564
    Abstract: A confined data communication system includes a reference generation circuit operable to produce one or more analog reference signals, an analog to digital converter circuit operable to process an analog signal to produce a digital representative signal, a digital filtering circuit operable to filter the digital representative signal to produce an affect value, a data processing module operable to interpret the affect value to produce processed output data, and a processing module operable to set frequency and waveform for each of the one or more analog reference signals, set digital filtering parameters for the digital filtering circuit, set a sampling rate for the analog to digital converter circuit, and set data interpretation parameters for the data processing module.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: February 27, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Grant Howard McGibney, Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand
  • Patent number: 11906564
    Abstract: A method includes providing, by a signal source circuit of a sensing circuit, a signal to a sensor via a conductor. When the sensor is exposed to a condition and is receiving the signal, an electrical characteristic of the sensor affects the signal. The signal includes at least one of: a direct current (DC) component and an oscillating component. When the sensing circuit is in a noisy environment, transient noise couples with the signal to produce a noisy signal. The method further includes comparing, by a transient circuit of the sensing circuit, the noisy signal with a representation of the noisy signal. When the noisy signal compares unfavorably with the representation of the noisy signal, supplying, by the transient circuit, a compensation signal to the conductor. A level of the compensation signal corresponds to a level at which the noisy signal compares unfavorably with the representation of the noisy signal.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: February 20, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Patrick Troy Gray, Richard Stuart Seger, Jr.
  • Patent number: 11907484
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: February 20, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11906587
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: February 20, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11907471
    Abstract: A drive-sense circuit coupled to a variable current load. The drive-sense circuit includes an impedance reference circuit operable to generate an impedance reference signal. The drive-sense circuit further includes a regulated voltage source circuit operable to generate a regulated voltage signal based on an analog regulation signal, where the regulated voltage signal is provided on a line to the variable current load to keep a load impedance on the line substantially matching the impedance reference signal, and where a current of the variable current load affects the regulated voltage signal. The drive-sense circuit further includes a voltage loop correction circuit operable to generate a comparison signal based on the impedance reference signal and the load impedance, where the comparison signal represents the current, and where the analog regulation signal is representative of the comparison signal.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: February 20, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11907450
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: February 20, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11899888
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11868298
    Abstract: A method includes obtaining, by a first processing entity, first data communication capabilities of a first host device. The first host device and the first processing entity are associated with a first low voltage drive circuit. The method further includes obtaining, by a second processing entity, second data communication capabilities of a second host device. The second host device and the second processing entity are associated with a second low voltage drive circuit. The method further includes reconciling, by one or more of the first and second processing entities, the first and second data communication capabilities to produce reconciled data communication capabilities and determining a data conveyance scheme and a data communication scheme for a one-to-one communication between the first and second low voltage drive circuits based on the reconciled data communication capabilities.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: January 9, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11861082
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20230417531
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 28, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Timothy W. Markison
  • Publication number: 20230409186
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Application
    Filed: August 28, 2023
    Publication date: December 21, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230400822
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230394002
    Abstract: A communication system comprises three low voltage drive circuits operable for coupling to a wired bus, wherein a low voltage drive circuit of the three low voltage drive circuits includes a transmit section operably coupled to convert transmit digital data into an analog transmit signal that includes one or more transmit frequency components. The communication system further comprises a receive section operably coupled to convert an analog receive signal that includes one or more receive frequency components into received digital data. The communication system further comprises a drive sense circuit for coupling to the wired bus and after the three low voltage drive circuits are operably coupled to the wired bus, each of the three voltage drive circuits is configured for communication among the three low voltage drive circuits, for one-to-one communication, for one-to-many communication, and for many-to-one communication.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11837279
    Abstract: A method for execution by a Dynamic Random Access (DRAM) cell processing circuit, includes charging a bit-line operably coupled to a plurality of DRAM cells of a DRAM memory device, including a current DRAM cell, at a first voltage to pre-charge the parasitic capacitance between ground and the bit-line to a second voltage, where the second voltage is between a logic 1 voltage and a logic 0 voltage. The method continues by sensing a voltage change on the bit-line based on a difference between a voltage stored on a DRAM cell capacitor of the current DRAM cell and the second voltage and outputting a read output voltage that is generated based on the sensed voltage change. The method then continues by supplying, while outputting the read output voltage, the read output voltage to the bit-line to refresh the voltage stored in the DRAM cell capacitor of the current DRAM cell.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: December 5, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison
  • Patent number: 11829566
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with a region of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC and other digital signals generated by other DSCs determine the region of the surface of the TSD that is associated with the overlay and to adapt sensitivity of the TSD within that region.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: November 28, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison