Patents by Inventor Gerald Leake

Gerald Leake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841531
    Abstract: There is set forth herein an optoelectrical device, comprising: a substrate; an interposer dielectric stack formed on the substrate, the interposer dielectric stack including a base interposer dielectric stack, a photonics device dielectric stack, and a bond layer that integrally bonds the photonics device dielectric stack to the base interposer dielectric stack. There is set forth herein a method comprising building an interposer base structure on a first wafer having a first substrate, including fabricating a plurality of through vias in the first substrate and fabricating within an interposer base dielectric stack formed on the first substrate one or more metallization layers; and building a photonics structure on a second wafer having a second substrate, including fabricating one or more photonics devices within a photonics device dielectric stack formed on the second substrate.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: December 12, 2023
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Douglas Coolbaugh, Douglas La Tulipe, Gerald Leake
  • Publication number: 20220381974
    Abstract: There is set forth herein an optoelectrical device, comprising: a substrate; an interposer dielectric stack formed on the substrate, the interposer dielectric stack including a base interposer dielectric stack, a photonics device dielectric stack, and a bond layer that integrally bonds the photonics device dielectric stack to the base interposer dielectric stack. There is set forth herein a method comprising building an interposer base structure on a first wafer having a first substrate, including fabricating a plurality of through vias in the first substrate and fabricating within an interposer base dielectric stack formed on the first substrate one or more metallization layers; and building a photonics structure on a second wafer having a second substrate, including fabricating one or more photonics devices within a photonics device dielectric stack formed on the second substrate.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 1, 2022
    Applicant: The Research Foundation for The State University of New York
    Inventors: Douglas COOLBAUGH, Douglas LA TULIPE, Gerald LEAKE
  • Patent number: 11435523
    Abstract: There is set forth herein an optoelectrical system comprising: a conductive path for supplying an input voltage to a photonics device, wherein the conductive path comprises a base structure through via extending through a substrate and a photonics structure through via, the photonics structure through via extending through a photonics device dielectric stack. There is set forth herein an optoelectrical system comprising: a second structure fusion bonded to an interposer base dielectric stack of a first structure. There is set forth herein a method comprising: fabricating a second wafer built structure using a second wafer, the second wafer built structure defining a photonics structure and having a photonics device integrated into a photonics device dielectric stack of the second wafer based structure; and wafer scale bonding the second wafer built structure to a first wafer built structure.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: September 6, 2022
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Douglas Coolbaugh, Douglas La Tulipe, Gerald Leake
  • Publication number: 20220229228
    Abstract: There is set forth herein a method including fabricating a photonics structure having one or more photonics device. The method can include forming one or more conductive material formation for communicating electrical signals to and/or from the one or more photonics device.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 21, 2022
    Applicant: The Research Foundation for the State University of New York
    Inventors: Douglas COOLBAUGH, Gerald LEAKE
  • Publication number: 20200319403
    Abstract: There is set forth herein an optoelectrical system comprising: a conductive path for supplying an input voltage to a photonics device, wherein the conductive path comprises a base structure through via extending through a substrate and a photonics structure through via, the photonics structure through via extending through a photonics device dielectric stack. There is set forth herein an optoelectrical system comprising: a second structure fusion bonded to an interposer base dielectric stack of a first structure. There is set forth herein a method comprising: fabricating a second wafer built structure using a second wafer, the second wafer built structure defining a photonics structure and having a photonics device integrated into a photonics device dielectric stack of the second wafer based structure; and wafer scale bonding the second wafer built structure to a first wafer built structure.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Douglas COOLBAUGH, Douglas LA TULIPE, Gerald LEAKE
  • Patent number: 10698156
    Abstract: There is set forth herein a method including building an interposer base structure on a first wafer having a first substrate, wherein the building an interposer base structure includes fabricating a plurality of through vias that extend through the first substrate and fabricating within an interposer base dielectric stack formed on the first substrate one or more metallization layer; building a photonics structure on a second wafer having a second substrate, wherein the building a photonics structure includes fabricating within a photonics device dielectric stack formed on the second substrate one or more photonics device; and bonding the photonics structure to the interposer base structure to define an interposer having the interposer base structure and one or more photonics device fabricated within the photonics device dielectric stack.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: June 30, 2020
    Assignee: The Research Foundation for the State University of New York
    Inventors: Douglas Coolbaugh, Douglas La Tulipe, Gerald Leake
  • Publication number: 20180314003
    Abstract: There is set forth herein a method including building an interposer base structure on a first wafer having a first substrate, wherein the building an interposer base structure includes fabricating a plurality of through vias that extend through the first substrate and fabricating within an interposer base dielectric stack formed on the first substrate one or more metallization layer; building a photonics structure on a second wafer having a second substrate, wherein the building a photonics structure includes fabricating within a photonics device dielectric stack formed on the second substrate one or more photonics device; and bonding the photonics structure to the interposer base structure to define an interposer having the interposer base structure and one or more photonics device fabricated within the photonics device dielectric stack.
    Type: Application
    Filed: February 8, 2018
    Publication date: November 1, 2018
    Inventors: Douglas Coolbaugh, Douglas La Tulipe, JR., Gerald Leake
  • Patent number: 9874693
    Abstract: A semiconductor structure can include an active device FET region having a FET and a photonics region having a photonic device including a waveguide. A semiconductor structure can include an active device FET region having a FET and a trench isolation region having a photonic device that includes a waveguide. A method can include forming a FET at an active device FET region of a semiconductor structure. A method can include forming a photonic device at a trench isolation region of a semiconductor structure.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: January 23, 2018
    Assignee: The Research Foundation for the State University of New York
    Inventors: Christopher Baiocco, Douglas Coolbaugh, Gerald Leake
  • Publication number: 20160363729
    Abstract: A semiconductor structure can include an active device FET region having a FET and a photonics region having a photonic device including a waveguide. A semiconductor structure can include an active device FET region having a FET and a trench isolation region having a photonic device that includes a waveguide. A method can include forming a FET at an active device FET region of a semiconductor structure. A method can include forming a photonic device at a trench isolation region of a semiconductor structure.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 15, 2016
    Inventors: Christopher Baiocco, Douglas Coolbaugh, Gerald Leake
  • Patent number: 9000564
    Abstract: Use of a replacement metal gate (RMG) process provides an opportunity to create precision polysilicon resistors alongside metal gate transistors. During formation of a sacrificial polysilicon gate, the precision polysilicon resistor can also be formed from the same polysilicon film. The polysilicon resistor can be slightly recessed so that a protective insulating layer can cover the resistor during subsequent replacement of the sacrificial gate with a metal gate. The final structure of the precision polysilicon resistor fabricated using such a process is more compact and less complex than existing structures that provide metal resistors for integrated circuits having metal gate transistors. Furthermore, the precision polysilicon resistor can be freely tuned to have a desired sheet resistance by either implanting the polysilicon film with dopants, adjusting the polysilicon film thickness, or both.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 7, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation, GlobalFoundries, Inc., Samsung Electronics Co., Ltd.
    Inventors: Pietro Montanini, Gerald Leake, Jr., Brett H. Engel, Roderick Mason Miller, Ju Youn Kim
  • Publication number: 20140175609
    Abstract: Use of a replacement metal gate (RMG) process provides an opportunity to create precision polysilicon resistors alongside metal gate transistors. During formation of a sacrificial polysilicon gate, the precision polysilicon resistor can also be formed from the same polysilicon film. The polysilicon resistor can be slightly recessed so that a protective insulating layer can cover the resistor during subsequent replacement of the sacrificial gate with a metal gate. The final structure of the precision polysilicon resistor fabricated using such a process is more compact and less complex than existing structures that provide metal resistors for integrated circuits having metal gate transistors. Furthermore, the precision polysilicon resistor can be freely tuned to have a desired sheet resistance by either implanting the polysilicon film with dopants, adjusting the polysilicon film thickness, or both.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Pietro Montanini, Gerald Leake, JR., Brett H. Engel, Roderick Mason Miller, Ju Youn Kim
  • Patent number: 7682910
    Abstract: A first semiconductor region and a second semiconductor region separated by a shallow trench isolation region are formed in a semiconductor substrate. A photoresist is applied and patterned so that the first semiconductor region is exposed, while the second semiconductor region is covered. Depending on the setting of parameters for the location of an edge of the patterned photoresist, the slope of sidewalls of the photoresist, the thickness of the photoresist, and the direction of ion implantation, ions may, or may not, be implanted into the entirety of the surface portion of the first semiconductor region by shading or non-shading of the first semiconductor region. The semiconductor substrate may further comprise a third semiconductor region into which the dopants are implanted irrespective of the shading or non-shading of the first semiconductor region. The selection of shading or non-shading may be changed from substrate to substrate in manufacturing.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Gerald Leake, Jr.
  • Publication number: 20090258480
    Abstract: A first semiconductor region and a second semiconductor region separated by a shallow trench isolation region are formed in a semiconductor substrate. A photoresist is applied and patterned so that the first semiconductor region is exposed, while the second semiconductor region is covered. Depending on the setting of parameters for the location of an edge of the patterned photoresist, the slope of sidewalls of the photoresist, the thickness of the photoresist, and the direction of ion implantation, ions may, or may not, be implanted into the entirety of the surface portion of the first semiconductor region by shading or non-shading of the first semiconductor region. The semiconductor substrate may further comprise a third semiconductor region into which the dopants are implanted irrespective of the shading or non-shading of the first semiconductor region. The selection of shading or non-shading may be changed from substrate to substrate in manufacturing.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 15, 2009
    Inventors: Terence B. Hook, Gerald Leake, JR.
  • Publication number: 20080124859
    Abstract: Methods of forming field effect transistors include methods of forming PMOS and NMOS transistors by forming first and second gate electrodes on a substrate and then forming an electrically insulating layer having etch-enhancing impurities therein, on the first and second gate electrodes. The electrically insulating layer may be formed as a boron-doped silicon nitride layer or an electrically insulating layer that is doped with germanium and/or fluorine. The electrically insulating layer is etched-back to define first sidewall spacers on the first gate electrode and second sidewall spacers on the second gate electrode. P-type source and drain region dopants are then implanted into the semiconductor substrate, using the first sidewall spacers as a first implant mask. The second sidewall spacers on the second gate electrode are then etched back to reduce their lateral dimensions.
    Type: Application
    Filed: November 27, 2006
    Publication date: May 29, 2008
    Inventors: Min Chul Sun, Jong Ho Yang, Young Gun Ko, Ja Hum Ku, Jae Eon Park, Jeong Hwan Yang, Christopher Vincent Baiocco, Gerald Leake