Patents by Inventor Gerard Schmid

Gerard Schmid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959853
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: April 16, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Publication number: 20240096924
    Abstract: Aspects of the technology described herein relate to improved semiconductor-based image sensor designs. In some embodiments, an integrated circuit may comprise a photodetection region and a drain region electrically coupled to the photodetection region, and the photodetection region may be configured to induce an intrinsic electric field in a direction from the photodetection region to the drain region(s). In some embodiments, a charge storage region and the drain region may be positioned on a same side of the photodetection region. In some embodiments, at least one drain layer may be configured to receive incident photons and/or charge carriers via the photodetection region. In some embodiments, an integrated circuit may comprise a plurality of pixels and a control circuit configured to control a transfer of charge carriers in the plurality of pixels.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Eric A.G. Webster, Changhoon Choi, Dajiang Yang, Xin Wang, Todd Rearick, Kyle Preston, Ali Kabiri, Gerard Schmid
  • Patent number: 11932906
    Abstract: Apparatus and techniques for electrokinetic loading of samples of interest into sub-micron-scale reaction chambers are described. Embodiments include an integrated device and related apparatus for analyzing samples in parallel. The integrated device may include at least one reaction chamber formed through a surface of the integrated device and configured to receive a sample of interest, such as a molecule of nucleic acid. The integrated device may further include electrodes patterned adjacent to the reaction chamber that produce one or more electric fields that assist loading the sample into the reaction chamber. The apparatus may further include a sample reservoir having a fluid seal with the surface of the integrated device and configured to hold a suspension containing the samples.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 19, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Guojun Chen, Jeremy Lackey, Alexander Goryaynov, Gerard Schmid, Ali Kabiri, Jonathan M. Rothberg, Todd Rearick, Jonathan C. Schultz, Farshid Ghasemi, Keith G. Fife
  • Patent number: 11885744
    Abstract: Some aspects relate to integrated devices for obtaining timing and/or spectral information from incident light. In some embodiments, a pixel may include one or more charge storage regions configured to receive charge carriers generated responsive to incident photons from a light source, with charge carriers stored in the charge storage region(s) indicative of spectral and timing information. In some embodiments, a pixel may include regions having different depths, each configured to generate charge carriers responsive to incident photons. In some embodiments, a pixel may include multiple charge storage regions having different depths, and one or more of the charge storage regions may be configured to receive the incident photons and generate charge carriers therein. In some embodiments, a pixel may include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: January 30, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Dajiang Yang, Eric A. G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston
  • Patent number: 11879841
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 23, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Patent number: 11869917
    Abstract: Aspects of the technology described herein relate to improved semiconductor-based image sensor designs. In some embodiments, an integrated circuit may comprise a photodetection region and a drain region electrically coupled to the photodetection region, and the photodetection region may be configured to induce an intrinsic electric field in a direction from the photodetection region to the drain region(s). In some embodiments, a charge storage region and the drain region may be positioned on a same side of the photodetection region. In some embodiments, at least one drain layer may be configured to receive incident photons and/or charge carriers via the photodetection region. In some embodiments, an integrated circuit may comprise a plurality of pixels and a control circuit configured to control a transfer of charge carriers in the plurality of pixels.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: January 9, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Eric A. G. Webster, Changhoon Choi, Dajiang Yang, Xin Wang, Todd Rearick, Kyle Preston, Ali Kabiri, Gerard Schmid
  • Publication number: 20240003811
    Abstract: Some aspects relate to an integrated circuit, comprising at least one photodetection region configured to generate charge carriers responsive to incident photons emitted from a sample, at least one charge storage region configured to receive the charge carriers from the photodetection region, and at least one controller configured to obtain information about the incident photons, the information comprising at least one member selected from the group comprising pulse duration and interpulse duration and at least one member selected from the group comprising wavelength information, luminescence lifetime information, and intensity information. In some embodiments, the information comprises at least three, four, and/or five members selected from the group comprising wavelength information, luminescence lifetime information, intensity information, pulse duration information, and interpulse duration information. In some embodiments, the information obtained may be used to identify the sample.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 4, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Dajiang Yang, Eric A.G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston, Brian Reed
  • Publication number: 20230375475
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 23, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20230358958
    Abstract: Apparatus and methods relating to coupling radiation from an incident beam into a plurality of waveguides with a grating coupler are described. A grating coupler can have offset receiving regions and grating portions with offset periodicity to improve sensitivity of the grating coupler to misalignment of the incident beam.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Kyle Preston, Shannon Stewman
  • Patent number: 11804499
    Abstract: Described herein are techniques to reduce or remove the impact of secondary path photons and/or charge carriers on storage bins of an integrated device to improve noise performance, and thus, sample analysis. Some embodiments relate to optical rejection techniques such as including an optical barrier positioned to block at least some photons from reaching the storage bins. Some embodiments relate to electrical rejection techniques such as including an electrical barrier configured to block at least some charge carriers from reaching the storage bins along at least one secondary path. Some embodiments relate to an integrated device in which at least one storage bin is shaped and/or positioned relative to the photodetector to facilitate receipt of some charge carriers (e.g., fluorescent emission charge carriers) and/or photons and to impede receipt of other charge carriers (e.g., noise charge carriers) and/or photons.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 31, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Dajiang Yang, Farshid Ghasemi, Keith G. Fife, Todd Rearick, Ali Kabiri, Gerard Schmid, Eric A. G. Webster
  • Publication number: 20230341621
    Abstract: Optical waveguides and couplers for delivering light to an array of photonic elements in a photonic integrated device. The photonic integrated device and related instruments and systems may be used to analyze samples in parallel. The photonic integrated device may include a grating coupler configured to receive light from an external light source and optically couple with multiple waveguides configured to optically couple with sample wells of the photonic integrated device.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 26, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Kyle Preston, Bing Shen, Ali Kabiri, Gerard Schmid
  • Patent number: 11774674
    Abstract: Optical waveguides and couplers for delivering light to an array of photonic elements in a photonic integrated device. The photonic integrated device and related instruments and systems may be used to analyze samples in parallel. The photonic integrated device may include a grating coupler configured to receive light from an external light source and optically couple with multiple waveguides configured to optically couple with sample wells of the photonic integrated device.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: October 3, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Kyle Preston, Bing Shen, Ali Kabiri, Gerard Schmid
  • Patent number: 11747561
    Abstract: Apparatus and methods relating to coupling radiation from an incident beam into a plurality of waveguides with a grating coupler are described. A grating coupler can have offset receiving regions and grating portions with offset periodicity to improve sensitivity of the grating coupler to misalignment of the incident beam.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 5, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Kyle Preston, Shannon Stewman
  • Publication number: 20230258862
    Abstract: System and methods for optical power distribution to a large numbers of sample wells within an integrated device that can analyze single molecules and perform nucleic acid sequencing are described. The integrated device may include a grating coupler configured to receive an optical beam from an optical source and optical splitters configured to divide optical power of the grating coupler to waveguides of the integrated device positioned to couple with the sample wells. Outputs of the grating coupler may vary in one or more dimensions to account for an optical intensity profile of the optical source.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabir, Gerard Schmid, Jason w. Sickler, Paul E. Glenn, Lawrence C. West, Kyle Preston, Alexander Gondarenko, Benjamin Cipriany, James Beach, Keith G. Fife, Farshid Ghasemi
  • Patent number: 11719639
    Abstract: Some aspects relate to an integrated circuit, comprising at least one photodetection region configured to generate charge carriers responsive to incident photons emitted from a sample, at least one charge storage region configured to receive the charge carriers from the photodetection region, and at least one controller configured to obtain information about the incident photons, the information comprising at least one member selected from the group comprising pulse duration and interpulse duration and at least one member selected from the group comprising wavelength information, luminescence lifetime information, and intensity information. In some embodiments, the information comprises at least three, four, and/or five members selected from the group comprising wavelength information, luminescence lifetime information, intensity information, pulse duration information, and interpulse duration information. In some embodiments, the information obtained may be used to identify the sample.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: August 8, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Dajiang Yang, Eric A. G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston, Brian Reed
  • Publication number: 20230223419
    Abstract: Aspects of the technology described herein relate to improved semiconductor-based image sensor designs. In some embodiments, an integrated circuit may comprise a photodetection region and a drain region electrically coupled to the photodetection region, and the photodetection region may be configured to induce an intrinsic electric field in a direction from the photodetection region to the drain region(s). In some embodiments, an integrated circuit may comprise a plurality of pixels and a control circuit configured to control a transfer of charge carriers in a plurality of time-binning pixels. In some embodiments, an optical component for optical rejection is provided in between a waveguide and the time-binning pixel and configured to block at least some excitation photons in a pulsed light stream from arriving at the photodetection region.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Todd Rearick, Brian Reed
  • Publication number: 20230221253
    Abstract: Techniques for multi-dimensional signal analysis are described herein. The techniques may be used in one or more sequencing applications. For example, according to some aspects, there is provided a method comprising: determining information about a sample that emits emission light in response to excitation light based on at least one of pulse duration and interpulse duration and at least two of wavelength, intensity, and lifetime of the emission light, wherein the sample comprises a reagent configured to be coupled to a luminescent label, and wherein a shielding element is disposed between the reagent and the luminescent label.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Brian Reed, Todd Rearick, Gerard Schmid, Haidong Huang
  • Publication number: 20230221330
    Abstract: Aspects of the disclosure provide methods of identifying and sequencing proteins, polypeptides, and amino acids, and compositions useful for the same. In some aspects, the disclosure provides amino acid recognition molecule compositions, such as amino acid binding proteins comprising different labels, and methods of polypeptide sequencing using such compositions.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Brian Reed, Todd Rearick, Gerard Schmid
  • Patent number: 11692938
    Abstract: Apparatus and methods relating to photonic bandgap optical nanostructures are described. Such optical nanostructures may exhibit prohibited photonic bandgaps or allowed photonic bands, and may be used to reject (e.g., block or attenuate) radiation at a first wavelength while allowing transmission of radiation at a second wavelength. Examples of photonic bandgap optical nanostructures includes periodic and quasi-periodic structures, with periodicity or quasi-periodicity in one, two, or three dimensions and structural variations in at least two dimensions. Such photonic bandgap optical nanostructures may be formed in integrated devices that include photodiodes and CMOS circuitry arranged to analyze radiation received by the photodiodes.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: July 4, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Ali Kabiri, Bing Shen, James Beach, Kyle Preston, Gerard Schmid
  • Publication number: 20230184678
    Abstract: Provided herein, in some embodiments, are methods of loading an integrated device and/or chip for detection (e.g., sequencing) and methods of sequencing a target molecule.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 15, 2023
    Inventors: Gerard Schmid, Todd Rearick, Brian Brian, Jonathan C. Schultz