Patents by Inventor Gerd Gaiser

Gerd Gaiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190112961
    Abstract: An internal combustion engine, exhaust system, exhaust gas/reactant mixing assembly unit includes an inlet area (14) of an exhaust gas flow duct (12) and a reactant release device (20) releasing reactant (R) into exhaust gas (A) flowing in the exhaust gas flow duct. The exhaust gas flow duct includes a mixing section (16) with a first mixing section segment (22) downstream of the reactant release device (20). An exhaust gas/reactant mixture flows in the first mixing section segment essentially in a main flow direction (H1)—from the reactant release device to a deflection area. A ring-shaped second mixing section segment (28) surrounds the first mixing section segment. The exhaust gas/reactant mixture flows in the second mixing section segment (28) in a second main flow direction (H2), essentially opposite the first main flow direction, from the deflection area (26) to an outlet area (34) of the exhaust gas flow duct (12).
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Inventor: Gerd GAISER
  • Publication number: 20190112962
    Abstract: A mixing device for an exhaust system of an internal combustion engine includes a mixing section (14) with a mixing section inlet area (20) to be positioned downstream in relation to a reactant introduction device (12). A mixing section outlet area (22) is positioned upstream in relation to a catalytic converter device (16). The mixing section (14) includes an inner wall (26) surrounding an inner volume (28), through which exhaust gas (A) or/and reactant (R) can flow, and an outer wall (24) surrounding the inner wall (26). An outer volume (30) surrounds the inner volume (28) in a ring-shape, formed between the inner wall and the outer wall (24). An electrically energizable heating device (34) is provided at the inner wall (26), or/and a heat transfer rib formation (54) is provided at the inner wall (26).
    Type: Application
    Filed: October 16, 2018
    Publication date: April 18, 2019
    Inventor: Gerd GAISER
  • Publication number: 20190107026
    Abstract: An exhaust system for an internal combustion engine, especially in a vehicle, includes an exhaust gas flow duct (14), a reactant release device (20) for the release of reactant (R) into the exhaust gas flow duct (14) and a catalytic converter device (16) downstream of the reactant release device (20). At least one part of a component surface is provided by a hydrophilic material (34) of at least one exhaust gas-carrying component (12, 22) positioned in the reactant flow path or/and defining this reactant flow path, or/and at least one part of the component surface is provided by a hydrophobic material (40) of at least one exhaust gas-carrying component (12, 18, 22) positioned in the reactant flow path.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 11, 2019
    Inventors: Gerd Gaiser, Bernd Weller
  • Publication number: 20190101036
    Abstract: A process for manufacturing an exhaust system for an internal combustion engine includes the steps: a) providing at least one exhaust gas-carrying component (12, 18) for the exhaust system (10); b) applying a basic material layer (24, 26) to at least one area of a surface of at least one of the exhaust gas-carrying components (12, 16) in a high-temperature application process; and c) applying a catalytically active material layer (28, 30) to the basic material layer (24, 26) in a low-temperature application process.
    Type: Application
    Filed: September 25, 2018
    Publication date: April 4, 2019
    Inventors: Gerd GAISER, Bernd WELLER
  • Patent number: 10190460
    Abstract: A device for releasing reactant (R) into the exhaust gas stream (A) of an internal combustion engine, includes a reactant injection unit (20), a reactant delivery unit (12) for delivering reactant (R) from a reactant reservoir (14) to the reactant injection unit (20), and a heating unit (18) for heating reactant (R) delivered by the reactant delivery unit (12) to the reactant injection unit (20). The reactant injection unit (20) is switchable as a function of a reactant pressure generated by the reactant delivery unit (12) between an open state for releasing reactant (R) and a locked state for preventing the release of reactant.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 29, 2019
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Gerd Gaiser
  • Patent number: 10156172
    Abstract: A device for releasing reactant (R) into the exhaust gas stream (A) of an internal combustion engine includes a reactant injection unit (20), a reactant delivery unit (12) for delivering reactant (R) from a reactant reservoir (14) to the reactant injection unit (20), a heating unit (18) for heating reactant (R) delivered by the reactant delivery unit (12) to the reactant injection unit (20). An actuating unit (32) actuates the reactant delivery unit (12), the heating unit (18) and the reactant injection unit (20). An overpressure valve (26) or/and a pressure storage unit (30) is provided downstream of the reactant delivery unit (12).
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 18, 2018
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Gerd Gaiser
  • Patent number: 10077696
    Abstract: The invention relates to a system component of an exhaust system for a combustion engine, more preferably of a motor vehicle, with at least one component portion having a closed hollow space structure (2), wherein walls of the closed hollow space structure (2) enclose a reaction chamber (5), in which at least one stationary system component (6) of a reactive heating system is arranged. By using a reactive heating system a rapid heating-up of at least one system component of the exhaust system is advantageously possible.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: September 18, 2018
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventor: Gerd Gaiser
  • Patent number: 9982570
    Abstract: An evaporator (1), for evaporating a liquid (4), particularly for a waste heat utilization device of an internal combustion engine, includes a plurality of channel plate arrangements (2) that are stacked in a stacking direction (3). A gas path (6) is formed between each pair of adjacent channel plate arrangements (2), through which a gas (7) can be conducted. The gas is used to supply the heat that is required to evaporate the liquid (4). Each channel plate arrangement (2) contains a liquid inlet (8), a steam outlet (9), and a channel (11) which connects the liquid inlet (8) and steam outlet (9) together and which forms a repeatedly deflecting evaporation path (12) for the liquid (4) to be evaporated. The channel (11) has, in an evaporation path (12) evaporation zone (14), a flowable cross-section (18) which increases in a direction of liquid (4) flow.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 29, 2018
    Assignee: EBERSPÄCHER EXHAUST TECHNOLOGY GMBH & CO. KG
    Inventor: Gerd Gaiser
  • Patent number: 9954157
    Abstract: A thermoelectric generator includes a first channel for passing a warm fluid along a direction of flow, a second channel for passing a cold fluid, a plurality of thermocouple elements disposed along the direction of flow between the first and second channels, a first member includes portions disposed between the elements and the first channel and associated with the individual elements for providing a heat coupling between the associated element and the first channel, and a second member including portions disposed between the elements and the second channel and associated with the individual elements for providing a heat coupling between the associated element and the second channel. The sum of the thermal resistances of those portions that are associated with a first element positioned upstream of a second element is bigger than the sum of the thermal resistances of those portions that are associated with the second element.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 24, 2018
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Gerd Gaiser, Fabian Frobenius, Matthias Hense
  • Publication number: 20180087423
    Abstract: A nozzle (1) includes a nozzle body (10), a piston (2) movably disposed inside the nozzle body (10), and a spring (3) between the nozzle body (10) and the piston (2). A reducing agent flow channel (12) extends between a nozzle inlet (11) and a nozzle orifice (14), which widens towards a nozzle opening (13). A piston head (21) closes or opens the nozzle orifice (14). The spring (3) biases the piston (2) to close the nozzle orifice (14) with the piston head (21). A largest diameter (D13) of the nozzle opening (13) is larger than a largest diameter (D21) of the piston head (21). An exhaust gas treatment device (5) includes a tank (51) for the liquid reducing agent, the nozzle (1), a reducing agent pump (53) and a reducing agent conduit (52). A control (54) is configured to operate the reducing agent pump (53) continuously with variable output.
    Type: Application
    Filed: August 9, 2017
    Publication date: March 29, 2018
    Inventors: Bernd WELLER, Gerd GAISER
  • Publication number: 20170358727
    Abstract: A thermoelectric generator includes a first channel for passing a warm fluid along a direction of flow, a second channel for passing a cold fluid, a plurality of thermocouple elements disposed along the direction of flow between the first and second channels, a first member includes portions disposed between the elements and the first channel and associated with the individual elements for providing a heat coupling between the associated element and the first channel, and a second member including portions disposed between the elements and the second channel and associated with the individual elements for providing a heat coupling between the associated element and the second channel. The sum of the thermal resistances of those portions that are associated with a first element positioned upstream of a second element is bigger than the sum of the thermal resistances of those portions that are associated with the second element.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventors: Gerd GAISER, Fabian FROBENIUS, Matthias HENSE
  • Publication number: 20170335741
    Abstract: A muffler for an exhaust system of an internal combustion engine, especially for vehicles with hybrid drive, includes a muffler housing (12), a heat exchanger unit (48), arranged in the muffler housing (12), for transferring heat from combustion exhaust gas to a heat transfer medium, an inlet pipe (38), a first outlet pipe (52) and a second outlet pipe (40). A first exhaust gas flow path (54), in the muffler housing, routs exhaust gas through the heat exchanger unit (48) to the first outlet pipe (52). A second exhaust gas flow path (56), in the muffler housing, routs exhaust gas to a second outlet pipe (40), bypassing the heat exchanger unit (48). A flow path blocking/releasing device (58) for blocking and releasing at least one exhaust gas flow path (54, 56), of the first exhaust gas flow path (54) and of the second exhaust gas flow path (56).
    Type: Application
    Filed: May 22, 2017
    Publication date: November 23, 2017
    Inventors: Jan KRÜGER, Gerd GAISER
  • Patent number: 9709351
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are fluidically connected with one another via a primary path (37) carrying a primary medium through the ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control (39) controls the flow of the primary medium through the primary path (37) and through the bypass path (38). At least two secondary inlets (42) and two secondary outlets (43) are fluidically connected with one another via at least two secondary paths (44) for carrying at least one secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner and such that the media are separated from one another.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 18, 2017
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Gerd Gaiser, Markus Birgler, Matthias Feuerbach, Marc Hartmann, Jürgen Schweizer, Rouven Egger, Dimitri Penner, Fabian Frobenius, Bernd Weller
  • Patent number: 9709350
    Abstract: A heat exchanger (5) includes a housing (31), which contains a tube (32) and has a jacket (33), which surrounds the tube (32) while forming a ring channel (34). A primary inlet (35) and a primary outlet (36) are connected to one another fluidically via a primary path (37) carrying a primary medium through ring channel (34) and via a bypass path (38) carrying the primary medium through the tube (32). A control device (39) controls the flow of the primary medium through the primary path (37) and the bypass path (38). A secondary inlet (42) and a secondary outlet (43) are connected to one another fluidically via at least two secondary paths (44) for carrying a secondary medium. The primary path (37) is coupled with the secondary paths (44) in a heat-transferring manner with the media separated from one another.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 18, 2017
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventors: Gerd Gaiser, Markus Birgler, Matthias Feuerbach, Marc Hartmann, Jürgen Schweizer, Rouven Egger, Dimitri Penner, Fabian Frobenius
  • Publication number: 20170198621
    Abstract: An exhaust system for an internal combustion engine, especially for a vehicle, includes an exhaust gas-carrying pipe (12) and a reactant release unit (14) for releasing reactant (R) into exhaust gas (A) flowing in the exhaust gas-carrying pipe (12). The reactant release unit (14) includes a reactant injection unit (20), a reactant delivery unit (18) delivering reactant (R) from a reactant reservoir to the reactant injection unit (20) and a heating unit (24) for heating reactant (R) being delivered to the reactant injection unit (20). The heating unit (24) includes an exhaust gas/reactant heat exchanger unit (26) for transferring heat, being transported in the exhaust gas (A), to the reactant (R).
    Type: Application
    Filed: January 10, 2017
    Publication date: July 13, 2017
    Inventors: Gerd GAISER, Fabian FROBENIUS, Bernd WELLER
  • Publication number: 20170122167
    Abstract: A device for releasing reactant (R) into the exhaust gas stream (A) of an internal combustion engine includes a reactant injection unit (20), a reactant delivery unit (12) for delivering reactant (R) from a reactant reservoir (14) to the reactant injection unit (20), a heating unit (18) for heating reactant (R) delivered by the reactant delivery unit (12) to the reactant injection unit (20). An actuating unit (32) actuates the reactant delivery unit (12), the heating unit (18) and the reactant injection unit (20). An overpressure valve (26) or/and a pressure storage unit (30) is provided downstream of the reactant delivery unit (12).
    Type: Application
    Filed: October 24, 2016
    Publication date: May 4, 2017
    Inventor: Gerd GAISER
  • Publication number: 20170114689
    Abstract: A device for releasing reactant (R) into the exhaust gas stream (A) of an internal combustion engine, includes a reactant injection unit (20), a reactant delivery unit (12) for delivering reactant (R) from a reactant reservoir (14) to the reactant injection unit (20), and a heating unit (18) for heating reactant (R) delivered by the reactant delivery unit (12) to the reactant injection unit (20). The reactant injection unit (20) is switchable as a function of a reactant pressure generated by the reactant delivery unit (12) between an open state for releasing reactant (R) and a locked state for preventing the release of reactant.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 27, 2017
    Inventor: Gerd GAISER
  • Publication number: 20170067381
    Abstract: An exhaust system for an internal combustion engine, especially for the internal combustion engine of a vehicle, includes an exhaust gas duct (12) carrying an exhaust gas stream (A) and a reactant release arrangement (18) for releasing a reactant ® into the exhaust gas stream (A). A bypass flow generation arrangement (25) generates a bypass flow (M) surrounding the reactant stream ® that is released from the reactant release arrangement (18).
    Type: Application
    Filed: August 29, 2016
    Publication date: March 9, 2017
    Inventor: Gerd GAISER
  • Patent number: 9587550
    Abstract: A component of an exhaust system for a combustion engine, particularly of a motor vehicle, has a hollow jacket at least partially surrounding the component. An intermediate space is surrounded by the walls of the hollow jacket and is closable in a pressure-tight manner. The intermediate space is fluidically connected to a vacuum generating device via a vacuum connection line and via a vacuum connection point of the component. With the vacuum generating device, a vacuum can be generated in the intermediate space. Through arrangement of a filler material, such as a support structure and/or of a fiber material and/or of a foam, in the intermediate space the stability of the hollow jacket can be improved.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 7, 2017
    Assignee: Eberspächer Exhaust Technology GMBH & CO. KG
    Inventor: Gerd Gaiser
  • Patent number: 9494367
    Abstract: A finned-tube heat transfer device (1) has a housing (2) enclosing a first flow path (3) for a first fluid with a first inlet (4) and a first outlet (5). A tube system (9) forms a second flow path (10) for a second fluid with a second inlet (11) and a second outlet (12) and which is coupled to the first flow path (3) in the housing (2) in a heat transferring manner. The tube system (9) has a multitude of tubes (13) that are parallel to one another, which extend between two housing walls (7) laterally delimiting the first flow path (3). The tubes are provided with fins (14), within the first flow path (3), which are fluidically interconnected outside the first flow path (3). A simplified producability can be achieved if the fluidic connection of the tubes (13) is effected within the two housing walls (7).
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 15, 2016
    Assignee: Eberspächer Exhaust Technology GMBH & CO. KG
    Inventor: Gerd Gaiser