Patents by Inventor Gerhard Roth

Gerhard Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959179
    Abstract: The invention relates to a coating system, more particularly a corrosion control coating system, for generating cathodic corrosion protection on a metallic substrate, comprising at least two layers, and also to a method for producing it and to a substrate coated with the coating system.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: April 16, 2024
    Assignee: EWALD DÖRKEN AG
    Inventors: Marcel Roth, Gerhard Reusmann, Sandra Böhm
  • Publication number: 20240084212
    Abstract: A coating composition for producing a coating with an adjustable coefficient of friction.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 14, 2024
    Applicant: Ewald Dörken AG
    Inventors: Reiner Wark, Nicole Matthée, Angela Kleinkorres, Hanna Smoll, Anastasia von Rhein, Martin Kunka, Marcel Roth, Gerhard Reusmann, Emre Kocak, Ingo Klüppel
  • Publication number: 20240076570
    Abstract: A coating composition for producing a coating with an adjustable coefficient of friction.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Applicant: Ewald Dörken AG
    Inventors: Reiner Wark, Nicole Matthée, Angela Kleinkorres, Hanna Smoll, Anastasia von Rhein, Martin Kunka, Marcel Roth, Gerhard Reusmann
  • Patent number: 10241168
    Abstract: A magnet coil system (1) has a first end section (19a) of an HTSL-tape conductor (4) located ahead of a first end (19) of an HTSL-tape conductor (4) and a first end section (20a) of an LTS wire (7) located prior to a first end (20) of the LTS wire (7) which are connected electrically but not in a superconducting way in a connecting section (17) along the length of the connecting section. The LTS wire (7) has a flat shape at least within the connecting section (17) and one side of the flat LTS wire (7) abutting the HTSL-tape conductor (4) and the connecting section (17) has a length of at least 5 m. The magnet coil system has an acceptably small residual ohmic resistance which is achieved by simple means.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: March 26, 2019
    Assignee: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Arne Kasten
  • Patent number: 10042017
    Abstract: An NMR spectrometer (131) with an NMR magnet coil (91) having windings of a conductor with a superconducting structure (1), which have a plurality of band-segments (2, 2a, 7a-7e, 8a-8d, 15) made of band-shaped superconductor. Each band-segment (2, 2a, 7a-7e, 8a-8d, 15) has a flexible substrate (3) and a superconducting layer (4) deposited thereon, wherein the band-segments (2, 2a, 7a-7e, 8a-8d, 15) each have a length of 20 m or more. At least one of the band-segments (2, 2a, 7a-7e, 8a-8d, 15) forms a linked band-segment (2, 2a), and each linked band-segment (2, 2a) is connected to at least two further band-segments (7a-7e) in such a way that the combined further band-segments (7a-7e) overlap with at least 95% of the total length (L) of the linked band-segment (2, 2a). The magnet coil generates particularly high magnetic fields in a sample volume and has a low drift.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 7, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Arne Kasten, Klaus Schlenga, Alexander Usoskin
  • Patent number: 9995510
    Abstract: A connecting device in a pulse tube cooler system branches such that a first line branch (11) has a first flexible line segment (4a) and a second line branch (12) has a second flexible line segment (4b), the flexible line segments being arranged in parallel with and offset from one another. The flexible line segments each have a front segment end (17, 18) and a rear segment end (19, 20), the front segment end (17) of the first flexible line segment (4a) and the rear segment end (20) of the second flexible line segment (4b) are rigidly connected to one another, the rear segment end (19) of the first flexible line segment (4a) and the front segment end (18) of the second flexible line segment (4b) are rigidly connected to one another, and there is no continuous rigid connection between the control valve and the cold head.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 12, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Patrick Wikus, Steffen Bonn, Gerhard Roth
  • Publication number: 20170284725
    Abstract: A cryostat for subcooled (<2.5 K) liquid helium includes two separate helium tanks. A Joule-Thomson cooling unit includes a heat exchanger in the lower part of the first helium tank and uses liquid stored in the second helium tank in order to cool the subcooled liquid helium stored in the lower part of the first helium tank. The Joule-Thomson cooling unit draws in liquid helium either directly from the second helium tank or from the first helium tank, which is replenished via the gas phase from the second helium tank. In this way, the subcooled liquid helium of the first helium tank can be cooled for a long time from a combined stock of liquid helium in the first helium tank and the second helium tank. The second helium tank may be arranged adjacent or surrounding the first helium tank to maintain a lower overall height of the cryostat.
    Type: Application
    Filed: June 9, 2017
    Publication date: October 5, 2017
    Inventors: Patrick WIKUS, Marco STROBEL, Gerhard ROTH
  • Publication number: 20170138644
    Abstract: A connecting device in a pulse tube cooler system branches such that a first line branch (11) has a first flexible line segment (4a) and a second line branch (12) has a second flexible line segment (4b), the flexible line segments being arranged in parallel with and offset from one another. The flexible line segments each have a front segment end (17, 18) and a rear segment end (19, 20), the front segment end (17) of the first flexible line segment (4a) and the rear segment end (20) of the second flexible line segment (4b) are rigidly connected to one another, the rear segment end (19) of the first flexible line segment (4a) and the front segment end (18) of the second flexible line segment (4b) are rigidly connected to one another, and there is no continuous rigid connection between the control valve and the cold head.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Inventors: Patrick Wikus, Steffen Bonn, Gerhard Roth
  • Publication number: 20160216348
    Abstract: An NMR spectrometer (131) with an NMR magnet coil (91) having windings of a conductor with a superconducting structure (1), which have a plurality of band-segments (2, 2a, 7a-7e, 8a-8d, 15) made of band-shaped superconductor. Each band-segment (2, 2a, 7a-7e, 8a-8d, 15) has a flexible substrate (3) and a superconducting layer (4) deposited thereon, wherein the band-segments (2, 2a, 7a-7e, 8a-8d, 15) each have a length of 20 m or more. At least one of the band-segments (2, 2a, 7a-7e, 8a-8d, 15) forms a linked band-segment (2, 2a), and each linked band-segment (2, 2a) is connected to at least two further band-segments (7a-7e) in such a way that the combined further band-segments (7a-7e) overlap with at least 95% of the total length (L) of the linked band-segment (2, 2a). The magnet coil generates particularly high magnetic fields in a sample volume and has a low drift.
    Type: Application
    Filed: October 2, 2014
    Publication date: July 28, 2016
    Inventors: Gerhard Roth, Arne Kasten, Klaus Schlenga, Alexander Usoskin
  • Publication number: 20160216347
    Abstract: A magnet coil system (1) has a first end section (19a) of an HTSL-tape conductor (4) located ahead of a first end (19) of an HTSL-tape conductor (4) and a first end section (20a) of an LTS wire (7) located prior to a first end (20) of the LTS wire (7) which are connected electrically but not in a superconducting way in a connecting section (17) along the length of the connecting section. The LTS wire (7) has a flat shape at least within the connecting section (17) and one side of the flat LTS wire (7) abutting the HTSL-tape conductor (4) and the connecting section (17) has a length of at least 5 m. The magnet coil system has an acceptably small residual ohmic resistance which is achieved by simple means.
    Type: Application
    Filed: October 2, 2014
    Publication date: July 28, 2016
    Inventors: Gerhard ROTH, Arne KASTEN
  • Patent number: 8467841
    Abstract: A superconducting high-field magnet coil system comprising several radially nested main coil sections (1, 2, 3, 4, 5) which are connected to each other in series in such a fashion that currents of the same direction flow through them during operation, wherein a first main coil section (EHS) is disposed radially further inward than a second main coil section (ZHS) and at least one intermediate main coil section (ZW) is disposed radially between the first and the second main coil section (EHS, ZHS), and with a superconducting switch (11) via which all main coil sections (1, 2, 3, 4, 5) can be superconductingly short-circuited in series, is characterized in that the first main coil section (EHS) and the second main coil section (ZHS) are directly successively series-connected and the first main coil section (EHS) and the second main coil section (ZHS) are bridged by a common quench protection element, which does not bridge the at least one intermediate main coil section (ZW).
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 18, 2013
    Assignee: Bruker BioSpin GmbH
    Inventors: Wolfgang Frantz, Gerald Neuberth, Gerhard Roth
  • Patent number: 8406833
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radically nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that heating means are provided which always keep the HTS at an increased temperature TH>TL and TH>2.2 K. The cryostat in accordance with the invention can maintain the HTS section over a long period of time in a reliable manner.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 26, 2013
    Assignee: Bruker Biospin GmbH
    Inventors: Gerhard Roth, Axel Lausch
  • Publication number: 20120292548
    Abstract: A rotary valve (1) for a cryocooler, in particular for a pulse tube cooler or for a Gifford-Mc-Mahon cooler, has a rotary body (6) that can be rotated by a motor about a rotary axis (DA), a control plate (5), and an axial rolling bearing, by means of which the rotary body (6) can roll along the control plate (5). The axial roller bearing is designed (19a-19c) as a bearing that is non-centering in the radial direction (RR). The rotary valve for a cryocooler has low wear and is thereby simple to produce and assemble.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 22, 2012
    Inventors: Yuriy Ogol, Claus Hanebeck, Gerhard Roth
  • Patent number: 8255022
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a first helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a separate helium tank (19) of the cryostat (1) having normal liquid helium and is separated from the LTS section (5, 6) by means of at least one wall disposed between the two helium tanks.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 28, 2012
    Assignees: Bruker Biospin GmbH, Forschungszentrum Karlsruhe GmbH
    Inventors: Theo Schneider, Gerhard Roth, Arne Kasten
  • Publication number: 20110271694
    Abstract: A cryostat configuration (10), with at least one cryostat (11), which has at least one first chamber (1) with supercooled liquid helium having a temperature of less than 4 K and at least one further chamber (2), which contains liquid helium having a temperature of approximately 4.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 10, 2011
    Applicant: Bruker BioSpin GmbH
    Inventors: Marco Strobel, Gerhard Roth
  • Publication number: 20110065584
    Abstract: A superconducting high-field magnet coil system comprising several radially nested main coil sections (1, 2, 3, 4, 5) which are connected to each other in series in such a fashion that currents of the same direction flow through them during operation, wherein a first main coil section (EHS) is disposed radially further inward than a second main coil section (ZHS) and at least one intermediate main coil section (ZW) is disposed radially between the first and the second main coil section (EHS, ZHS), and with a superconducting switch (11) via which all main coil sections (1, 2, 3, 4, 5) can be superconductingly short-circuited in series, is characterized in that the first main coil section (EHS) and the second main coil section (ZHS) are directly successively series-connected and the first main coil section (EHS) and the second main coil section (ZHS) are bridged by a common quench protection element, which does not bridge the at least one intermediate main coil section (ZW).
    Type: Application
    Filed: September 1, 2010
    Publication date: March 17, 2011
    Inventors: Wolfgang Frantz, Gerald Neuberth, Gerhard Roth
  • Patent number: 7895737
    Abstract: A winding machine (1) for winding solenoid-shaped coils (21) with band-shaped conductors (6), comprising a winding means (3) which holds a circular-cylindrical coil core (2) of a coil (21) to be wound, and a winding drive which rotates a coil core (2), which is held in the winding means (3), about a winding axis W, wherein the winding means (3) can be moved in a first direction A by an axial drive, the direction A preferably extending approximately parallel to the winding axis W, is characterized in that the winding means (3) can be rotated about a pivot axis S by a pivot drive, wherein the pivot axis S extends perpendicularly to the direction A. The winding machine winds a solenoid-shaped coil with several layers of a band-shaped conductor without damaging the band-shaped conductor, in particular, when the band-shaped conductor contains brittle superconducting material.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: March 1, 2011
    Assignee: Bruker Biospin GmbH
    Inventors: Gerhard Roth, Klaus Schlenga, Thorsten Greeb, Roland Binger
  • Publication number: 20100236260
    Abstract: A cryostat configuration has a magnet coil system (2) disposed in a helium tank (1), and a horizontal room temperature bore (3) which provides access to a volume under investigation in the center of the magnet coil system (2). The helium tank (1) contains undercooled liquid helium at a temperature of less than 3.5 K, in particular of approximately 2 K, and the cryostat configuration has at least one vertical tower structure (4) on its upper side for filling in and evaporating helium. The tower structure (4) contains a container (5) with liquid helium of 4.2 K which is separated from the helium tank (1) by a thermal barrier (7), and the helium tank (1) contains an undercooling unit (9). This yields a compact cryostat configuration which achieves continuous, stable long-term operation with an undercooled high-field magnet coil.
    Type: Application
    Filed: June 29, 2006
    Publication date: September 23, 2010
    Applicant: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Marco Strobel
  • Publication number: 20090291850
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field Bo in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a first helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a separate helium tank (19) of the cryostat (1) having normal liquid helium and is separated from the LTS section (5, 6) by means of at least one wall disposed between the two helium tanks.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 26, 2009
    Inventors: Theo Schneider, Gerhard Roth, Arne Kasten
  • Publication number: 20090275477
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that heating means are provided which always keep the HTS at an increased temperature TH>TL and TH>2.2 K. The cryostat in accordance with the invention can maintain the HTS section over a long period of time in a reliable manner.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 5, 2009
    Inventors: Gerhard Roth, Axel Lausch