Patents by Inventor Ghavam G. Shahidi

Ghavam G. Shahidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10026752
    Abstract: An amplifier circuit including a substrate layer and a plurality of lateral bipolar junction transistors positioned entirely above the substrate. The lateral bipolar junction transistors include a plurality of monolithic emitter-collector regions coplanar to each other. Each of the emitter-collector regions is both an emitter region of a first bipolar junction transistor a collector region of a second bipolar junction transistor from the lateral bipolar junction transistors. Accordingly, the lateral bipolar junction transistors are electrically coupled in series circuit at the emitter-collector regions.
    Type: Grant
    Filed: August 28, 2016
    Date of Patent: July 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alberto Valdes Garcia, Tak H. Ning, Jean-Olivier Plouchart, Ghavam G. Shahidi, Jeng-Bang Yau
  • Patent number: 10011920
    Abstract: An epitaxy method includes providing an exposed crystalline region of a substrate material. Silicon is epitaxially deposited on the substrate material in a low temperature process wherein a deposition temperature is less than 500 degrees Celsius. A source gas is diluted with a dilution gas with a gas ratio of dilution gas to source gas of less than 1000.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Alexander Reznicek, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20180181774
    Abstract: A private key of a public-private key pair with a corresponding identity is written to an integrated circuit including a processor, a non-volatile memory, and a cryptographic engine coupled to the processor and the non-volatile memory. The private key is written to the non-volatile memory. The integrated circuit is implemented in complementary metal-oxide semiconductor 14 nm or smaller technology. The integrated circuit is permanently modified, subsequent to the writing, such that further writing to the non-volatile memory is disabled and such that the private key can be read only by the cryptographic engine and not off-chip. Corresponding integrated circuits and wafers are also disclosed.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Richard H. Boivie, Eduard A. Cartier, Daniel J. Friedman, Kohji Hosokawa, Charanjit Jutla, Wanki Kim, Chandrasekara Kothandaraman, Chung Lam, Frank R. Libsch, Seiji Munetoh, Ramachandran Muralidhar, Vijay Narayanan, Dirk Pfeiffer, Devendra K. Sadana, Ghavam G. Shahidi, Robert L. Wisnieff
  • Patent number: 10008281
    Abstract: A method of operating a programmable read-only-memory (ROM) cell unit having a series coupled CMOS NFET and CMOS PFET device formed on a semiconductor layer located on top of a buried dielectric layer, the buried dielectric layer formed on top of a cell substrate, and each NFET and PFET device having a respective gate, drain and source terminals. The method includes applying a first bias voltage to the cell substrate; and applying a second bias voltage to a drain terminal of the PFET device with respect to a source of the PFET, the second bias voltage sufficient to enable electron trapping at the buried dielectric layer associated with that cell, the injected electron carriers trapped at the buried dielectric layer providing a stored charge representative of a logic bit value at the unit cell that is physically undetectable and is configured to be read electrically.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Tak H. Ning, Ghavam G. Shahidi, Jeng-Bang Yau
  • Publication number: 20180175454
    Abstract: A method for forming a thin film lithium ion battery includes, under a same vacuum seal, forming a stack of layers on a substrate including an anode layer, an electrolyte, a cathode layer and a first cap over the stack of layers to protect the layers from air. Under a same vacuum seal, the stack of layers is etched with a non-reactive etch process in accordance with a hardmask, and a second cap layer is formed over the stack of layers without breaking the vacuum seal. Contacts coupled to the cathode and the anode are formed.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 21, 2018
    Inventors: Effendi Leobandung, Ghavam G. Shahidi
  • Patent number: 9991408
    Abstract: A method of forming an electrical device that includes epitaxially growing a first conductivity type semiconductor material of a type III-V semiconductor on a semiconductor substrate. The first conductivity type semiconductor material continuously extending along an entirety of the semiconductor substrate in a plurality of triangular shaped islands; and conformally forming a layer of type III-V semiconductor material having a second conductivity type on the plurality of triangular shaped islands to provide a textured surface of a photovoltaic device. A light emitting diode is formed on the textured surface of the photovoltaic device.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9985164
    Abstract: A method of forming an electrical device that includes epitaxially growing a first conductivity type semiconductor material of a type III-V semiconductor on a semiconductor substrate. The first conductivity type semiconductor material continuously extending along an entirety of the semiconductor substrate in a plurality of triangular shaped islands; and conformally forming a layer of type III-V semiconductor material having a second conductivity type on the plurality of triangular shaped islands to provide a textured surface of a photovoltaic device. A light emitting diode is formed on the textured surface of the photovoltaic device.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20180145202
    Abstract: A method of forming a photovoltaic device that includes ion implanting a first conductivity type dopant into first regions of a semiconductor layer of an SOI substrate, wherein the first regions are separated by a first pitch; and ion implanting a second conductivity type dopant into second regions of the semiconductor layer of the SOI substrate. The second regions are separated by a second pitch. Each second conductivity type implanted region of the second regions is in direct contact with first conductivity type implanted region of the first regions to provide a plurality of p-n junctions, and adjacent p-n junctions are separated by an intrinsic portion of the semiconductor layer to provide P-I-N cells that are horizontally oriented.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9968438
    Abstract: High resolution active matrix nanowire circuits enable a flexible platform for artificial electronic skin having pressure sensing capability. Comb-like interdigitated nanostructures extending vertically from a pair of opposing, flexible assemblies facilitate pressure sensing via changes in resistance caused by varying the extent of contact among the interdigitated nanostructures. Electrically isolated arrays of vertically extending, electrically conductive nanowires or nanofins are formed from a doped, electrically conductive layer, each of the arrays being electrically connected to a transistor in an array of transistors. The nanowires or nanofins are interdigitated with further electrically conductive nanowires or nanofins mounted to a flexible handle.
    Type: Grant
    Filed: November 7, 2015
    Date of Patent: May 15, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20180130864
    Abstract: An apparatus includes a junction field-effect transistor (JFET) and a set of one or more serially-connected diodes. The JFET includes a first layer including silicon of a first conductivity type, a gate, and first and second terminals. The gate includes a second layer formed on the first layer and including intrinsic amorphous hydrogenated silicon, a third layer formed on the second layer and including amorphous hydrogenated silicon of a second conductivity type, and a conductive layer formed on the third layer. Each of the first and second terminals includes a fourth layer formed on the first layer, the fourth layer including crystalline hydrogenated silicon of the first conductivity type, and a conductive layer formed on the fourth layer. Each of the serially-connected diodes has first and second terminals, a first of the serially-connected diodes having the first terminal connected to the second terminal of the JFET.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20180130414
    Abstract: A pixel circuit includes a first capacitor and diode stage connected to a gate of a first transistor and ground, which receives a select input. A data line is coupled to a first source/drain of the first transistor, and a second source/drain of the first transistor is coupled to a gate of a second transistor. The second transistor has a drain connected to a supply voltage and a source connected to a resistor. The resistor connects to an organic light emitting diode (OLED), which connects to the ground.
    Type: Application
    Filed: November 7, 2016
    Publication date: May 10, 2018
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20180129319
    Abstract: An apparatus includes multiple pixel circuits for touch and fingerprint detection that may be integrated with a touchscreen. Each pixel circuit includes a JFET with a gate connected to a capacitor plate, where the capacitor plate may be integrated with the gate, and where the capacitor plate is connected via a first diode to a corresponding select line. Furthermore, each JFET in the multiple pixel circuits has a source (or drain) connected to a corresponding read line and a drain (or source) connected via a second diode to a corresponding select line.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 9947969
    Abstract: A method for forming a thin film lithium ion battery includes, under a same vacuum seal, forming a stack of layers on a substrate including an anode layer, an electrolyte, a cathode layer and a first cap over the stack of layers to protect the layers from air. Under a same vacuum seal, the stack of layers is etched with a non-reactive etch process in accordance with a hardmask, and a second cap layer is formed over the stack of layers without breaking the vacuum seal. Contacts coupled to the cathode and the anode are formed.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, Ghavam G. Shahidi
  • Publication number: 20180102179
    Abstract: A method of operating a programmable read-only-memory (ROM) cell unit having a series coupled CMOS NFET and CMOS PFET device formed on a semiconductor layer located on top of a buried dielectric layer, the buried dielectric layer formed on top of a cell substrate, and each NFET and PFET device having a respective gate, drain and source terminals. The method includes applying a first bias voltage to the cell substrate; and applying a second bias voltage to a drain terminal of the PFET device with respect to a source of the PFET, the second bias voltage sufficient to enable electron trapping at the buried dielectric layer associated with that cell, the injected electron carriers trapped at the buried dielectric layer providing a stored charge representative of a logic bit value at the unit cell that is physically undetectable and is configured to be read electrically.
    Type: Application
    Filed: April 13, 2017
    Publication date: April 12, 2018
    Inventors: Tak H. Ning, Ghavam G. Shahidi, Jeng-Bang Yau
  • Publication number: 20180097138
    Abstract: A method of forming a photovoltaic device that includes ion implanting a first conductivity type dopant into first regions of a semiconductor layer of an SOI substrate, wherein the first regions are separated by a first pitch; and ion implanting a second conductivity type dopant into second regions of the semiconductor layer of the SOI substrate. The second regions are separated by a second pitch. Each second conductivity type implanted region of the second regions is in direct contact with first conductivity type implanted region of the first regions to provide a plurality of p-n junctions, and adjacent p-n junctions are separated by an intrinsic portion of the semiconductor layer to provide P-I-N cells that are horizontally oriented.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20180097137
    Abstract: A photovoltaic device includes a substrate and a P-type layer having a first electrode formed on a surface of the P-type layer. An N-type layer has a second electrode formed on a surface of the N-type layer. The P-type layer and the N-type are formed from a common base material. The base material includes a bandgap of at least 2 electron-volts such that a potential across the first and second electrodes is greater than 2 volts when the device is exposed to light.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9935223
    Abstract: A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9935230
    Abstract: A method of forming a photovoltaic device that includes ion implanting a first conductivity type dopant into first regions of a semiconductor layer of an SOI substrate, wherein the first regions are separated by a first pitch; and ion implanting a second conductivity type dopant into second regions of the semiconductor layer of the SOI substrate. The second regions are separated by a second pitch. Each second conductivity type implanted region of the second regions is in direct contact with first conductivity type implanted region of the first regions to provide a plurality of p-n junctions, and adjacent p-n junctions are separated by an intrinsic portion of the semiconductor layer to provide P-I-N cells that are horizontally oriented.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20180083630
    Abstract: A complementary circuit, including a logic unit comprising pull-up depletion-mode MOS transistors and pull-down depletion-mode MOS transistors having a single channel type and a level shifting circuit coupled to the logic unit.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 22, 2018
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20180076237
    Abstract: A method is presented for forming a semiconductor device. The method may include forming a first gate structure on a first portion of a semiconductor material located on a surface of an insulating substrate, the first gate structure including a first sacrificial layer and a second sacrificial layer and forming a second gate structure on a second portion of the semiconductor material located on the surface of the insulating substrate, the second gate structure including a third sacrificial layer. The method further includes etching the first and second dielectric sacrificial layers to create a first contact region within the first gate structure and etching the third dielectric sacrificial layer to create a second contact region within the second gate structure. The method further includes forming silicide in at least the first and second contact regions of the first and second gate structures, respectively.
    Type: Application
    Filed: May 26, 2017
    Publication date: March 15, 2018
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi