Patents by Inventor Gideon J. van Zyl

Gideon J. van Zyl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9124248
    Abstract: This disclosure describes systems, methods, and apparatuses for impedance-matching radio frequency power transmitted from a radio frequency generator to a plasma load in a semiconductor processing chamber. Impedance-matching can be performed via a match network having a variable-reactance circuit. The variable-reactance circuit can comprise one or more reactive elements all connected to a first terminal and selectively shorted to a second terminal via a switch. The switch can comprise a bipolar junction transistor (BJT) or insulated gate bipolar transistor (IGBT) controlled via bias circuitry. In an on-state, the BJT base-emitter junction is forward biased, and AC is conducted between a collector terminal and a base terminal. Thus, AC passes through the BJT primarily from collector to base rather than from collector to emitter. Furthermore, the classic match network topology used with vacuum variable capacitors can be modified such that voltages do not overload the BJT's in the modified topology.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 1, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Gideon J. Van Zyl, Gennady G. Gurov
  • Patent number: 8847561
    Abstract: An apparatus, system and method are described that enable an impedance of a plasma load to be matched with a power generator. In some embodiments the apparatus includes a power output adapted to apply power that is utilized to energize a plasma; a sensor adapted to sample power applied at the power output so as to obtain power samples; and an impedance control output configured to provide, responsive to the power samples, an impedance-control signal that enables an impedance matching network connected to the output of the power generator and to the impedance control output to match, responsive to the an impedance-control signal, the impedance of the plasma to the operating impedance of the power generator.
    Type: Grant
    Filed: December 14, 2008
    Date of Patent: September 30, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Tom Karlicek, Gideon J. van Zyl, Lane Sanford
  • Publication number: 20130193867
    Abstract: This disclosure describes systems, methods, and apparatuses for impedance-matching radio frequency power transmitted from a radio frequency generator to a plasma load in a semiconductor processing chamber. Impedance-matching can be performed via a match network having a variable-reactance circuit. The variable-reactance circuit can comprise one or more reactive elements all connected to a first terminal and selectively shorted to a second terminal via a switch. The switch can comprise a bipolar junction transistor (BJT) or insulated gate bipolar transistor (IGBT) controlled via bias circuitry. In an on-state, the BJT base-emitter junction is forward biased, and AC is conducted between a collector terminal and a base terminal. Thus, AC passes through the BJT primarily from collector to base rather than from collector to emitter. Furthermore, the classic match network topology used with vacuum variable capacitors can be modified such that voltages do not overload the BJT's in the modified topology.
    Type: Application
    Filed: March 6, 2013
    Publication date: August 1, 2013
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Gideon J. Van Zyl, Gennady G. Gurov
  • Patent number: 8416008
    Abstract: This disclosure describes systems, methods, and apparatuses for impedance-matching radio frequency power transmitted from a radio frequency generator to a plasma load in a semiconductor processing chamber. Impedance-matching can be performed via a match network having a variable-reactance circuit. The variable-reactance circuit can comprise one or more reactive elements all connected to a first terminal and selectively shorted to a second terminal via a switch. The switch can comprise a bipolar junction transistor (BJT) or insulated gate bipolar transistor (IGBT) controlled via bias circuitry. In an on-state, the BJT base-emitter junction is forward biased, and AC is conducted between a collector terminal and a base terminal. Thus, AC passes through the BJT primarily from collector to base rather than from collector to emitter. Furthermore, the classic match network topology used with vacuum variable capacitors can be modified such that voltages do not overload the BJT's in the modified topology.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: April 9, 2013
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Gideon J. Van Zyl, Gennady G. Gurov
  • Publication number: 20120188007
    Abstract: This disclosure describes systems, methods, and apparatuses for impedance-matching radio frequency power transmitted from a radio frequency generator to a plasma load in a semiconductor processing chamber. Impedance-matching can be performed via a match network having a variable-reactance circuit. The variable-reactance circuit can comprise one or more reactive elements all connected to a first terminal and selectively shorted to a second terminal via a switch. The switch can comprise a bipolar junction transistor (BJT) or insulated gate bipolar transistor (IGBT) controlled via bias circuitry. In an on-state, the BJT base-emitter junction is forward biased, and AC is conducted between a collector terminal and a base terminal. Thus, AC passes through the BJT primarily from collector to base rather than from collector to emitter. Furthermore, the classic match network topology used with vacuum variable capacitors can be modified such that voltages do not overload the BJT's in the modified topology.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Gideon J. Van Zyl, Gennady G. Gurov
  • Patent number: 7970562
    Abstract: A system, method and apparatus for monitoring a processing system is disclosed. The method includes obtaining N parameter-value pairs that include a first parameter value and a second parameter value; obtaining, for each parameter-value pair, the product of the first parameter value and the complex conjugate of the second parameter value to obtain N products defined by a real part and an imaginary part; obtaining, for each parameter-value pair, a product of the second parameter value and the complex conjugate of the second parameter value to obtain N real numbers; calculating an average reflection coefficient by dividing an imaginary number by an average of the N real numbers, the real component of the imaginary number being equal to the average of the real parts of the N products and the imaginary part of the imaginary number being equal to an average of the imaginary parts of the N products.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 28, 2011
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Gideon J. van Zyl
  • Patent number: 7761247
    Abstract: A method and apparatus for detecting arcs in a plasma processing system is disclosed. In one embodiment the apparatus comprises an input to receive a measured value of a parameter related to power transfer from the RF power generator to a plasma load; arc detection circuitry that computes a dynamic boundary about the value of the parameter; and controller logic responsive to the arc detection circuitry, wherein the controller logic indicates an occurrence of an arc within the plasma load if a subsequent value of the parameter exceeds the dynamic boundary.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 20, 2010
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Gideon J. van Zyl
  • Publication number: 20090278512
    Abstract: An apparatus, system and method are described that enable an impedance of a plasma load to be matched with a power generator. In some embodiments the apparatus includes a power output adapted to apply power that is utilized to energize a plasma; a sensor adapted to sample power applied at the power output so as to obtain power samples; and an impedance control output configured to provide, responsive to the power samples, an impedance-control signal that enables an impedance matching network connected to the output of the power generator and to the impedance control output to match, responsive to the an impedance-control signal, the impedance of the plasma to the operating impedance of the power generator.
    Type: Application
    Filed: December 14, 2008
    Publication date: November 12, 2009
    Inventors: Tom Karlicek, Gideon J. van Zyl, Lane Sanford
  • Publication number: 20090281741
    Abstract: A system, method and apparatus for monitoring a processing system is disclosed. The method includes obtaining N parameter-value pairs that include a first parameter value and a second parameter value; obtaining, for each parameter-value pair, the product of the first parameter value and the complex conjugate of the second parameter value to obtain N products defined by a real part and an imaginary part; obtaining, for each parameter-value pair, a product of the second parameter value and the complex conjugate of the second parameter value to obtain N real numbers; calculating an average reflection coefficient by dividing an imaginary number by an average of the N real numbers, the real component of the imaginary number being equal to the average of the real parts of the N products and the imaginary part of the imaginary number being equal to an average of the imaginary parts of the N products.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Inventor: Gideon J. van Zyl
  • Publication number: 20090237170
    Abstract: A method and apparatus for tuning the operational frequency of an electrical generator coupled to a time-varying load is described. One illustrative embodiment rapidly calculates an error (reflection coefficient magnitude) at the current operational frequency of the electrical generator; adjusts the frequency of the electrical generator by an initial step size so; rapidly calculates a second error; and if the magnitude of the second error is smaller than the magnitude of the first error, then the step size is increased and the frequency is adjusted by the increased step size.
    Type: Application
    Filed: September 30, 2008
    Publication date: September 24, 2009
    Inventors: Gideon J. Van Zyl, Jeff Roberg
  • Publication number: 20080156632
    Abstract: A method and apparatus for detecting arcs in a plasma processing system is disclosed. In one embodiment the apparatus comprises an input to receive a measured value of a parameter related to power transfer from the RF power generator to a plasma load; arc detection circuitry that computes a dynamic boundary about the value of the parameter; and controller logic responsive to the arc detection circuitry, wherein the controller logic indicates an occurrence of an arc within the plasma load if a subsequent value of the parameter exceeds the dynamic boundary.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Inventor: Gideon J. Van Zyl
  • Patent number: 7305311
    Abstract: A radio frequency power delivery system comprises an RF power generator, arc detection circuitry, and control logic responsive to the arc detection circuitry. A dynamic boundary is computed about the measured value of a parameter representative of or related to the power transferred from the power generator to a load. A subsequently measured value of the parameter that exceeds the computed dynamic boundary of the parameter indicates detection of an arc. Upon detection of an arc, power delivery from the generator is interrupted or adjusted, or other action is taken, until the arc is extinguished. By employing dynamic computation of arc detection boundaries, the invention allows for arc handling in RF power deliver systems regardless of whether the system has reached a stable power delivery condition.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: December 4, 2007
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Gideon J. van Zyl