Patents by Inventor Gilles J. Benoit

Gilles J. Benoit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220137455
    Abstract: An optical stack for reflecting and transmitting light in a predetermined wavelength range includes stacked first and second optical films, the predetermined wavelength range defining a first wavelength range and a remaining wavelength range. For normally incident light and for each wavelength in a first wavelength range, the first optical film substantially reflects light having a first polarization state, and substantially transmits light having a second polarization state. For each of the first and second polarization states, for wavelengths in the first wavelength range, the second optical film has a maximum optical transmittance Tmax for light incident at a first incident angle, and an optical transmittance Tmax/2 for light incident at a second incident angle, where the second incident angle is greater than the first incident angle by less than about 50 degrees. For wavelengths in the remaining wavelength range, the second optical film reflects at least 80% of light.
    Type: Application
    Filed: February 18, 2020
    Publication date: May 5, 2022
    Inventors: Gilles J. Benoit, Carl A. Stover, Matthew B. Johnson, Ryan T. Fabick, Quinn D. Sanford
  • Publication number: 20220128955
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting, by a control system for the environment, control settings for the environment based on internal parameters of the control system, wherein: at least some of the control settings for the environment are selected based on a causal model, and the internal parameters include a first set of internal parameters that define a number of previously received performance metric values that are used to generate the causal model for a particular controllable element; obtaining, for each selected control setting, a performance metric value; determining that generating the causal model for the particular controllable element would result in higher system performance; and adjusting, based on the determining, the first set of internal parameters.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 28, 2022
    Inventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220128979
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a manufacturing process. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of control settings for a manufacturing process, based on a causal model that measures causal relationships between control settings and a measure of a success of the manufacturing process; ii) determining the measure of the success of the manufacturing process using the configuration of control settings; and iii) adjusting, based on the measure of the success of the manufacturing process using the configuration of control settings, the causal model.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 28, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220121971
    Abstract: A system and methods for multivariant learning and optimization repeatedly generate self-organized experimental units (SOEUs) based on the one or more assumptions for a randomized multivariate comparison of process decisions to be provided to users of a system. The SOEUs are injected into the system to generate quantified inferences about the process decisions. Responsive to injecting the SOEUs, at least one confidence interval is identified within the quantified inferences, and the SOEUs are iteratively modified based on the at least one confidence interval to identify at least one causal interaction of the process decisions within the system. The causal interaction can be used for testing, diagnosis, and optimization of the system performance.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 21, 2022
    Inventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson
  • Publication number: 20220057258
    Abstract: A technique of determining the presence of a species in a sample may include passing light through an optical filter. In an example, the optical filter may include a spatially variant microreplicated layer optically coupled to a wavelength selective filter. The wavelength selective filter may have a light incidence angle-dependent optical band. The spatially variant microreplicated layer may be configured to transmit light to a first optical region of the wavelength selective filter at a first predetermined incidence angle and to a second optical region of the wavelength selective filter at a second predetermined incidence angle.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 24, 2022
    Inventors: John A. WHEATLEY, Gilles J. BENOIT, Guanglei DU, Rolf W. BIERNATH, Sara Suzanne MERRITT, James HILLIS, Owen M. ANDERSON, Timothy J. NEVITT
  • Publication number: 20220057632
    Abstract: An optical system, including a reflective polarizer, and a display and a mirror disposed on a same side of, and generally facing, the reflective polarizer. The reflective polarizer may transmit at least 80% of incident light having a first polarization state and may reflect at least 80% of incident light having a second polarization state, and the mirror may reflect at least 80% of the incident light for each of the first and second polarization states. The central locations of the display, reflective polarizer, and mirror may define a midplane which includes first, second, and third regions, such that the first region includes portions of the image rays that pass at least once across the region, the second region includes portions of the image rays that pass at least twice across the region, and the third region includes portions of the image rays that pass three times across the region.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 24, 2022
    Inventors: Zhisheng Yun, Hao Wu, Stephen J. Willett, Craig R. Schardt, Stephan J. Pankratz, Gilles J. Benoit
  • Publication number: 20220050428
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting control settings for the environment based on (i) a causal model that identifies causal relationships between possible settings for controllable elements in the environment and environment responses that reflect a performance of the control system in controlling the environment and (ii) current values of a set of internal parameters; and during the repeatedly selecting: monitoring environment responses to the selected control settings; determining, based on the environment responses, an indication that one or more properties of the environment have changed; and in response, modifying the current values of one or more of the internal parameters.
    Type: Application
    Filed: September 11, 2019
    Publication date: February 17, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220050237
    Abstract: A light control film is disclosed that includes a plurality of spaced apart first regions. Each first region has a substantially low transmission in one or two of a first wavelength range from about 300 nm to about 400 nm, a second wavelength range from about 400 nm to about 700 nm, and a third wavelength range from about 700 nm to about 1200 nm, and a substantially high transmission in the remaining wavelength ranges. The light control film has a viewing angle of less than about 70 degrees along a predetermined first direction.
    Type: Application
    Filed: September 30, 2021
    Publication date: February 17, 2022
    Inventors: John A. Wheatley, Gilles J. Benoit, Guanglei Du, Steven R. Anderson, Owen M. Anderson, David T. Yust, Rolf W. Biernath, Gary E. Gaides, Brian W. Lueck, Neeraj Sharma
  • Publication number: 20220050427
    Abstract: Systems and methods for dynamically optimizing models used for sensor data analytics. An action is taken based on an analytics determination by systematically varying parameters of the analytical model using actions taken based on the analytics to determine the relative frequencies of hits, misses, false alarms, and correct rejections for particular model parameters. The model parameters for local analytics are selected based upon on signal detection theory analysis and the value or cost of each hit, miss, false alarm, or correct rejection.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit
  • Publication number: 20220011557
    Abstract: An optical system including one or more optical lenses, at least one retarder layer, a reflective polarizer, and a partial reflector is provided. The at least one retarder layer may include first and second retarder layers having different wavelength dispersion curves. The at least one retarder layer may include a first retarder layer having a non-uniform fast axis orientation and/or a non-uniform retardance.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 13, 2022
    Inventors: Michael L. Steiner, Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Jo A. Etter, Gilles J. Benoit, John D. Le, Erin A. McDowell
  • Publication number: 20220004015
    Abstract: An optical film and a polarizing beam splitter (PBS) including the optical film is described. The optical film includes a first optical stack disposed on, and spaced apart by one or more spacer layers from, a second optical stack. When the optical film is disposed between, and adhered to, hypotenuses of first and second prisms to form a PBS and a cone of light is incident on the PBS making an incident angle of about 40 to 50 degrees with the optical film, the PBS has: an average optical reflectance Rs greater than about 95% for a first polarization state; an average optical transmittance Ts less than about 0.012% for the first polarization state; an average optical transmittance Tp less than about 98.5% for a second polarization state; and an average optical reflectance Rp less than about 0.25% for the second polarization state.
    Type: Application
    Filed: December 4, 2019
    Publication date: January 6, 2022
    Inventors: David J.W. Aastuen, Zhisheng Yun, Timothy J. Nevitt, John D. Le, Susan L. Kent, Gilles J. Benoit, David T. Yust
  • Publication number: 20220004475
    Abstract: Methods for active data center management by injecting randomized controlled signals in the operational controls of the cooling infrastructure of the data center and receiving response signals corresponding with the injected signals. The injected signals are used to adjust the operational controls of the cooling infrastructure, and the response signals relate to the operational conditions in the data center. Based upon the response signals along with independent and external variables, the randomized signals are continually injected into the cooling infrastructure and fine-tuned based upon the response signals. Optimum or improved parameters for controlling the cooling infrastructure of the data center are determined based upon the signal injections and corresponding responses.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 6, 2022
    Inventor: Gilles J. Benoit
  • Publication number: 20210390401
    Abstract: Systems for optimizing business objectives of e-commerce content can include memory and a processor coupled to the memory. The processor can receive one or more assumptions for multivariate comparison of content. The content can be provided to users of an e-commerce system. The processor can repeatedly generate self-organizing experimental units (SOEUs) based on the one or more assumptions. The processor can inject the SOEUs into the online system to generate quantified inferences about the content. The processor can identify, responsive to injecting the SOEUs, at least one confidence interval within the quantified inferences. The processor can iteratively modify the SOEUs based on the at least one confidence interval to identify at least one causal interaction of the e-commerce content within the system. Other methods and apparatuses are described.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 16, 2021
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O.N. Olson, Thomas J. Barnidge, Audrey X. Yang, Frederick J. Arsenault, Tyler W. Olson, Jennifer S. Hilpisch
  • Patent number: 11187576
    Abstract: In an example, an example article may include a spatially variant microreplicated layer optically coupled to a wavelength selective filter. The wavelength selective filter may have a light incidence angle-dependent optical band. The spatially variant microreplicated layer may be configured to transmit light to a first optical region of the wavelength selective filter at a first predetermined incidence angle and to a second optical region of the wavelength selective filter at a second predetermined incidence angle.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 30, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John A. Wheatley, Gilles J. Benoit, Guanglei Du, Rolf W. Biernath, Sara Suzanne Merritt, James Hillis, Owen M. Anderson, Timothy J. Nevitt
  • Publication number: 20210341660
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Patent number: 11163099
    Abstract: A light control film is disclosed that includes a plurality of spaced apart first regions. Each first region has a substantially low transmission in one or two of a first wavelength range from about 300 nm to about 400 nm, a second wavelength range from about 400 nm to about 700 nm, and a third wavelength range from about 700 nm to about 1200 nm, and a substantially high transmission in the remaining wavelength ranges. The light control film has a viewing angle of less than about 70 degrees along a predetermined first direction.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: November 2, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: John A. Wheatley, Gilles J. Benoit, Guanglei Du, Steven R. Anderson, Owen M. Anderson, David T. Yust, Rolf W. Biernath, Gary E. Gaides, Brian W. Lueck, Neeraj Sharma
  • Publication number: 20210336471
    Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.
    Type: Application
    Filed: September 10, 2019
    Publication date: October 28, 2021
    Inventors: Catherine A. Leatherdale, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J.L. Chevrier, Don Vincent West, Brandon A. Bartling
  • Patent number: 11156814
    Abstract: An optical system including one or more optical lenses, at least one retarder layer, a reflective polarizer, and a partial reflector is provided. The at least one retarder layer may include first and second retarder layers having different wavelength dispersion curves. The at least one retarder layer may include a first retarder layer having a non-uniform fast axis orientation and/or a non-uniform retardance.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 26, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael L. Steiner, Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Jo A. Etter, Gilles J. Benoit, John D. Le, Erin A. McDowell
  • Publication number: 20210278679
    Abstract: A display system includes a pixelated display being curved about at least one axis and including a plurality of groups of pixels; a plurality of light redirecting elements where each light redirecting element corresponds to a different group of pixels in the plurality of groups of pixels; and an optical lens system adapted to receive light emitted by the pixelated display and transmitted by the plurality of light redirecting elements. The optical lens system transmits at least a portion of the received light. For at least one pixel in the plurality of groups of pixels, the light redirecting element corresponding to the pixel reduces an angle between a central light ray emitted by the pixel and a chief light ray emitted by the pixel.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Zhisheng Yun, Gilles J. Benoit, Jo Anne Etter
  • Publication number: 20210263203
    Abstract: An article includes an optical filter that comprises a wavelength selective reflective layer and at least one wavelength selective absorbing layer. The optical filter has visible transmittance between 400 nm-700 nm of less than about 30% and near infrared transmittance at 830 nm-900 nm greater than about 30%.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: John A. Wheatley, Guanglei Du, David T. Yust, Neeraj Sharma, Gilles J. Benoit, Ellison G. Kawakami, Anthony M. Renstrom