Patents by Inventor Giorgos Hatzilias

Giorgos Hatzilias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11510351
    Abstract: Precisely aligned assemblies can be complex, time consuming, labor intensive, and expensive and a need exists for better alternatives. Systems and methods described herein yield high precision printed circuit board assemblies (PCBAs) that contain pre-built alignment features to address this need. The work of precisely locating components on the PCBA to a final position in the overall assembly is already built in to the board. Locating features are used to precisely position one or more components, such as optical components, electro optical components, or mechanical components in assemblies. The locating features may be used to constrain the positions of those components, such as by kinematic coupling, solder wetting dynamics, semiconductor cleaving, dicing, photolithographic techniques for etching, constant contact force, and advanced adhesive technology to result in optical level positioning that significantly improves or eliminates assembly alignment challenges.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: November 22, 2022
    Assignee: Engent, Inc.
    Inventor: Giorgos Hatzilias
  • Publication number: 20200221615
    Abstract: Precisely aligned assemblies can be complex, time consuming, labor intensive, and expensive and a need exists for better alternatives. Systems and methods described herein yield high precision printed circuit board assemblies (PCBAs) that contain pre-built alignment features to address this need. The work of precisely locating components on the PCBA to a final position in the overall assembly is already built in to the board. Locating features are used to precisely position one or more components, such as optical components, electro optical components, or mechanical components in assemblies. The locating features may be used to constrain the positions of those components, such as by kinematic coupling, solder wetting dynamics, semiconductor cleaving, dicing, photolithographic techniques for etching, constant contact force, and advanced adhesive technology to result in optical level positioning that significantly improves or eliminates assembly alignment challenges.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 9, 2020
    Inventor: Giorgos Hatzilias
  • Publication number: 20150097931
    Abstract: Various examples related to calibration of a scanning device are disclosed. In one example, among others, a system includes a calibration pattern, a sensing device, and a calibration control system to control positioning of the calibration pattern with respect to the sensing device. Tracking sensors of the sensing device capture images of the calibration pattern during calibration of the sensing device. In another example, a method includes determining an estimated pose of the scanning device using an image of a calibration pattern, determining an error between a projected location of an artifact of the calibration pattern and an actual location of the artifact, and adjusting a tracking parameter using the error. In another example, a method includes determining an association between a pixel of an image sensor of a scanning device and a point in scanner space using pixel information corresponding to light reflected by an illuminated calibration pattern.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Inventors: Karol Hatzilias, Harris Bergman, Ruizhi Hong, Giorgos Hatzilias, Jon Jowers, Wess Eric Sharpe
  • Publication number: 20150097929
    Abstract: Disclosed are various embodiments for rendering multiple video streams in a display. A mobile computing device configured to perform a scan of an object utilizing the at least one imaging device may generate a first video stream utilizing the at least one imaging device. The mobile computing device may access a second video stream comprising at least a three-dimensional reconstruction of the object subject to the scan and may render the first video stream and the second video stream in a display in data communication with the mobile computing device.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Inventors: Harris Bergman, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess Eric Sharpe, Amy Stone
  • Publication number: 20150097968
    Abstract: Various examples related to calibration of a scanning device are disclosed. In one example, among others, a calibration cradle includes a calibration pattern positioned within the calibration cradle and recesses to support a scanning device in a fixed position relative to the calibration pattern. In another example, a method includes positioning a scanning device in a calibration cradle, obtaining an image of a calibration pattern with a tracking sensor of the scanning device, determining an estimated pose of the scanning device, and determining an error associated with the calibration pattern using the estimated pose. In another example, a method includes capturing an image of a cone mirror a probe of a scanning device, determining a centroid of the cone mirror image, and determining an error associated with the cone mirror using the centroid.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Inventors: Harris Bergman, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Jon Jowers, Wess Eric Sharpe
  • Publication number: 20150057533
    Abstract: A device for scanning a body orifice or surface including a light source and a wide angle lens. The light from the light source is projected in a pattern distal or adjacent to the wide angle lens. Preferably, the pattern is within a focal surface of the wide angle lens. The pattern intersects a surface of the body orifice, such as an ear canal, and defines a partial lateral portion of the pattern extending along the surface. A processor is configured to receive an image of the lateral portion from the wide angle lens and determine a position of the lateral portion in a coordinate system using a known focal surface of the wide angle lens. Multiple lateral portions are reconstructed by the processor to build a three-dimensional shape. This three-dimensional shape may be used for purposes such as diagnostic, navigation, or custom-fitting of medical devices, such as hearing aids.
    Type: Application
    Filed: November 12, 2014
    Publication date: February 26, 2015
    Inventors: HARRIS BERGMAN, SCOTT CAHALL, GIORGOS HATZILIAS, KAROL HATZILIAS, DAVID G. STITES
  • Patent number: 8900129
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900125
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900126
    Abstract: A device for scanning a body orifice or surface including a light source and a wide angle lens. The light from the light source is projected in a pattern distal or adjacent to the wide angle lens. Preferably, the pattern is within a focal surface of the wide angle lens. The pattern intersects a surface of the body orifice, such as an ear canal, and defines a partial lateral portion of the pattern extending along the surface. A processor is configured to receive an image of the lateral portion from the wide angle lens and determine a position of the lateral portion in a coordinate system using a known focal surface of the wide angle lens. Multiple lateral portions are reconstructed by the processor to build a three-dimensional shape. This three-dimensional shape may be used for purposes such as diagnostic, navigation, or custom-fitting of medical devices, such as hearing aids.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Harris Bergman, Scott Cahall, Giorgos Hatzilias, Karol Hatzilias, David G. Stites
  • Patent number: 8900127
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900128
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900130
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20140286540
    Abstract: Methods, systems, and apparatus for estimating physical parameters using three dimensional representations. In one aspect, predetermined light patterns are projected onto an object and light patterns resulting from an interaction of the projected light patterns and portions of the object are detected. Three dimensional locations of multiple light elements in the detected light pattern are determined, and physical parameters of the object, for example, weight, are estimated based on the locations.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 25, 2014
    Applicant: Body Surface Translations, Inc.
    Inventors: Karol Hatzilias, Giorgos Hatzilias, James Alan Burns Emsley, Harris Bergman, Chris Van Buren, John Durbin, Nate Berglund
  • Publication number: 20140200408
    Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS ERIC SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV
  • Patent number: 8715173
    Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: May 6, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8659764
    Abstract: Methods, systems, and apparatus for estimating physical parameters using three dimensional representations. In one aspect, predetermined light patterns are projected onto an object and light patterns resulting from an interaction of the projected light patterns and portions of the object are detected. Three dimensional locations of multiple light elements in the detected light pattern are determined, and physical parameters of the object, for example, weight, are estimated based on the locations.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 25, 2014
    Assignee: Body Surface Translations, Inc.
    Inventors: Karol Hatzilias, Giorgos Hatzilias, James Alan Burns Emsley, Harris Bergman, Chris Van Buren, John Durbin, Nate Berglund
  • Publication number: 20140031701
    Abstract: Determination of structure-from-motion that includes a scanner body having mounted upon it a tracking illumination emitter and one or more tracking illumination sensors, the tracking illumination sensors disposed upon the scanner body so as to sense reflections of tracking illumination, the scanned object characterized by an object space defined by fixed positions of tracking targets; the scanner body having mounted within it an image sensor, the scanner body characterized by a scanner space, the image sensor coupled for data communications to a data processor and a computer memory, the image sensor and the processor capturing one or more images of the scanned object; and the data processor configured so that it determines by structure-from-motion, based upon the one or more captured images and tracked positions of the probe inferred from reflections of tracking illumination, the location in object space of a feature of the scanned object.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20140031680
    Abstract: Apparatus and methods for tracking scanner motion with a tracking illumination emitter mounted on a scanner, the scanner including imaging apparatus that captures a sequence of images of a scanned object as the scanner moves with respect to the scanned object; tracking targets installed off the scanner at positions that are fixed relative to a scanned object; one or more tracking illumination sensors mounted on the scanner, the tracking illumination sensors sensing reflections of tracking illumination emitted from the tracking illumination emitter and reflected from the tracking targets as the scanner moves in the process of scanning the scanned object; and one or more data processors, at least one of the data processors coupled for data communications to the tracking illumination sensors, the data processor determining, as the scanner moves, tracked positions of the scanner based upon values of the reflections.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS E. SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV
  • Publication number: 20130237764
    Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20130237759
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV