Patents by Inventor Gitimoy Kar

Gitimoy Kar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6824608
    Abstract: A nucleant seed for epitaxial growth of single-crystal CaF2 includes SrF2. In some embodiments, YF3, LaF3, or rare-earth fluoride is substituted into the SrF2 structure.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: November 30, 2004
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Charles W. Deneka, Gitimoy Kar
  • Patent number: 6548142
    Abstract: The present invention describes a glass honeycomb structure having a variety of shapes and sizes depending on its ultimate application. Unlike prior art honeycomb structures made from ceramics, the inventive glass honeycomb can be readily bent and/or redrawn. Furthermore, the inventive honeycomb structure is lightweight, yet able to support heavy loads on its end faces. Therefore, the inventive honeycomb can be used as a light-weight support for such objects as mirrors. Other useful properties of the extruded glass honeycomb are its high softening temperature, its transparency to ultraviolet and visible light, and its ability to be redrawn. Embodiments that rely upon one or more of these properties include: a bio-reactor, a membrane reactor, a capillary flow controller, a high efficiency filtration system, in-situ water treatment, high temperature dielectric material, and photonic band gap material.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: April 15, 2003
    Assignee: Corning Incorporated
    Inventors: Gitimoy Kar, Kenneth E. Hrdina, John F. Wight, Jr., C. Charles Yu
  • Publication number: 20030019420
    Abstract: A nucleant seed for epitaxial growth of single-crystal CaF2 includes SrF2. In some embodiments, YF3, LaF3, or rare-earth fluoride is substituted into the SrF2 structure.
    Type: Application
    Filed: September 16, 2002
    Publication date: January 30, 2003
    Inventors: George H. Beall, Charles W. Deneka, Gitimoy Kar
  • Patent number: 6479129
    Abstract: The present invention describes an extrusion process for manufacturing a titanium-containing silicate glass honeycomb structure, having a variety of shapes and sizes depending on its ultimate application. The titanium-containing glass honeycomb has a very low coefficient of thermal expansion (CTE) and the CTE can be varied by adjusting the titanium level to match the CTE of members that are bonded to the honeycomb. Furthermore, the inventive honeycomb structure is lightweight, yet able to support heavy loads on its end faces. Therefore, the inventive honeycomb can be advantageously used as a light-weight support for such objects as mirrors. Especially contemplated is using these inventive honeycomb supports for mirrors used in extraterresial environments where temperature extremes are present. These honeycombs can be used singularly or in aggregates to provide such support.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: November 12, 2002
    Assignee: Corning Incorporated
    Inventors: Gitimoy Kar, Kenneth E. Hrdina, John F. Wight, Jr., C. Charles Yu
  • Patent number: 6468374
    Abstract: The present invention describes an extrusion process for manufacturing a glass honeycomb structure having a variety of shapes and sizes depending on its ultimate application. Unlike prior art honeycomb structures made from ceramics, the inventive glass honeycomb can be readily viscously bent and/or redrawn. Furthermore, the inventive honeycomb structure is lightweight, yet able to support heavy loads on its end faces. Therefore, the inventive honeycomb can be used as a light-weight support for such objects as mirrors. These honeycombs can be used singularly or in aggregates to provide such support. Embodiments are described wherein the mass of the honeycomb is further reduced by removing select portions of the honeycomb without deleteriously impacting its ability for load bearing.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: October 22, 2002
    Assignee: Corning Incorporated
    Inventors: Gitimoy Kar, Kenneth E. Hrdina, John F. Wight, Jr., C. Charles Yu
  • Patent number: 5062685
    Abstract: Optical communication media particularly adapted for blow-in installation, including single optical fibers and lightweight flexible optical cables comprising one or more glass optical fibers in a multilayer polymer coating, are disclosed. The multilayer coating includes a textured polymer outer layer and at least one soft buffer layer positioned between the textured polymer outer layer and the glass optical fiber or fibers, the buffer layer comprising a low T.sub.g polymer and preferably having a layer thickness at least sufficient to maintain thermally induced microbending loss in the optical communication medium below about 0.5 db/km at medium operating temperatures in the range of 0.degree. C. to -60.degree. C.
    Type: Grant
    Filed: October 11, 1989
    Date of Patent: November 5, 1991
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Robert B. Desorcie, Rengan Kannabiran, Gitimoy Kar, Eric H. Urruti
  • Patent number: 4877306
    Abstract: An optical waveguide fiber is provided which comprises (a) a glass core; (b) a glass cladding which includes a barrier layer in the region of its outer surface which has an index of refraction and an absorption coefficient which are greater than the index of refraction and the absorption coefficient of the remainder of the cladding; and (c) a polymeric protective coating which is in direct contact with the outer surface of the cladding and which has an index of refraction which is less than the index of refraction of the barrier layer and less than the index of refraction of the remainder of the cladding. In certain preferred embodiments, the polymeric coating is selected from the group consisting of RTV silicone rubbers, UV curable silicones of the thio-ene type, UV curable silicone acrylates, and fluoropolymeric coatings.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: October 31, 1989
    Assignee: Corning Glass Works
    Inventor: Gitimoy Kar
  • Patent number: 4792347
    Abstract: In the process for applying a protective plastic coating to a glass optical waveguide fiber by the application of a curable liquid coating material thereto and the subsequent curing of the liquid coating to a protective plastic layer, the surface of the glass optical fiber is conditioned prior to the application of the liquid coating material thereto by replacing air adjacent the fiber surface with a selected gas preferably exhibiting high solubility in the liquid coating composition and resisting bubble formation in the liquid coating layer as it is formed.
    Type: Grant
    Filed: September 25, 1986
    Date of Patent: December 20, 1988
    Assignee: Corning Glass Works
    Inventors: Charles W. Deneka, Gitimoy Kar, Thomas O. Mensah
  • Patent number: 4531959
    Abstract: Optical fibers are coated under pressure to reduce the amount of bubbles entrapped in the coating and provide good coating concentricities. The fiber is drawn axially thru a thin-walled, cylindrical flow distribution sleeve which is located between a guide die and a sizing die. The sleeve contains a plurality of evenly distributed holes the number and size of which is such that radial flow of liquid toward the fiber is maintained over the entire length of the sleeve which is less than 1.27 cm.
    Type: Grant
    Filed: October 4, 1984
    Date of Patent: July 30, 1985
    Assignee: Corning Glass Works
    Inventors: Gitimoy Kar, Thomas O. Mensah