Patents by Inventor Gleb Yushin

Gleb Yushin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113391
    Abstract: The present disclosure relates to Li-ion battery with an anode, a cathode, a porous separator membrane, and an electrolyte that fills pores in the anode, the cathode, and the porous separator membrane; and a porous separator membrane and methods of generating the same.
    Type: Application
    Filed: June 12, 2023
    Publication date: April 4, 2024
    Applicants: Georgia Tech Research Corporation, Daicel Corporation
    Inventors: Aashray Narla, Wenbin Fu, Kostiantyn Turcheniuk, Gleb Yushin, Atsushi Kume
  • Patent number: 11942624
    Abstract: A battery electrode composition is provided comprising composite particles, with each composite particle comprising active material and a scaffolding matrix. The active material is provided to store and release ions during battery operation. For certain active materials of interest, the storing and releasing of the ions causes a substantial change in volume of the active material. The scaffolding matrix is provided as a porous, electrically-conductive scaffolding matrix within which the active material is disposed. In this way, the scaffolding matrix structurally supports the active material, electrically interconnects the active material, and accommodates the changes in volume of the active material.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 26, 2024
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Bogdan Zdyrko, Addison Shelton, Eugene Berdichevsky, Igor Luzinov, Alexander Jacobs, Eerik Hantsoo, George Gomes
  • Patent number: 11931810
    Abstract: Aspects relate to method of zinc-comprising nanowire fabrication, the method comprising forming a starting material comprising zinc metal or zinc metal alloy and at least one reactive metal, and exposing the starting material to one or more alcohols to obtain a reaction product comprising zinc-comprising nanowires, wherein the at least one reactive metal is more reactive than zinc to the one or more alcohols.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: March 19, 2024
    Assignees: Sila Nanotechnologies, Inc., Georgia Tech Research Corporation
    Inventors: Gleb Yushin, Wenqiang Hu, Samik Jhulki, Wenbin Fu, Kostiantyn Turcheniuk
  • Patent number: 11894540
    Abstract: A battery electrode composition is provided that comprises a composite material comprising one or more nanocomposites. The nanocomposites may each comprise a planar substrate backbone having a curved geometrical structure, and an active material forming a continuous or substantially continuous film at least partially encasing the substrate backbone. To form an electrode from the electrode composition, a plurality of electrically-interconnected nanocomposites of this type may be aggregated into one or more three-dimensional agglomerations, such as substantially spherical or ellipsoidal granules.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: February 6, 2024
    Assignee: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Gleb Yushin, Kara Evanoff, Oleksandr Magazynskyy
  • Publication number: 20240039034
    Abstract: Lithium-ion batteries are provided that variously comprise anode and cathode electrodes, an electrolyte, a separator, and, in some designs, a protective layer. In some designs, at least one of the electrodes may comprise a composite of (i) Li2S and (ii) conductive carbon that is embedded in the core of the composite. In some designs, the protective layer may be disposed on at least one of the electrodes via electrolyte decomposition. Various methods of fabrication for lithium-ion battery electrodes and particles are also provided.
    Type: Application
    Filed: May 16, 2023
    Publication date: February 1, 2024
    Inventors: Gleb YUSHIN, Feixiang WU, Hyea KIM
  • Patent number: 11855280
    Abstract: Battery electrode compositions and methods of fabrication are provided that utilize composite particles. Each of the composite particles may comprise, for example, a high-capacity active material and a porous, electrically-conductive scaffolding matrix material. The active material may store and release ions during battery operation, and may exhibit (i) a specific capacity of at least 220 mAh/g as a cathode active material or (ii) a specific capacity of at least 400 mAh/g as an anode active material. The active material may be disposed in the pores of the scaffolding matrix material. According to various designs, each composite particle may exhibit at least one material property that changes from the center to the perimeter of the scaffolding matrix material.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: December 26, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Eugene Michael Berdichevsky, Alexander Thomas Jacobs, Alper Nese, Damian Harris, Bogdan Zdyrko
  • Publication number: 20230411595
    Abstract: In an aspect, a rechargeable battery cell, comprises an anode, a cathode, a separator layer electrically separating the anode and the cathode, and an electrolyte ionically coupling the anode and the cathode. In a further aspect, the anode comprises aluminum (Al) metal or an Al alloy, the cathode comprises a compound comprising an alkali metal, the electrolyte comprises Al and ions of the alkali metal, the Al in the electrolyte alloys with or plates on the anode and the ions of the alkali metal de-insert from the cathode into the electrolyte during charging of the rechargeable battery cell, and the Al de-alloy or de-plate from the anode into the electrolyte and the ions of the alkali metal in the electrolyte insert into the cathode during discharging of the rechargeable battery cell.
    Type: Application
    Filed: June 13, 2023
    Publication date: December 21, 2023
    Inventors: Miguel CABAN-ACEVEDO, Gleb YUSHIN
  • Patent number: 11848438
    Abstract: In an aspect, a Li-ion cell may comprise a densified electrode exhibiting an areal capacity loading of more than about 4 mAh/cm2. For example, the densified electrode may a first electrode part arranged on a current collector and a second electrode part on top of the first electrode part, the second electrode part of the at least one densified electrode having a higher porosity than the first electrode part of the at least one densified electrode. In some designs, the densified electrode may be fabricated by densifying electrode layers via a pressure roller while maintaining a contacting part of the pressure roller at a temperature that is less than a temperature of the second electrode part. In some designs, the applied pressure is a time-varying (e.g., frequency modulated) pressure. In some designs, a drying time for a slurry to produce the densified electrode may range from around 1-120 seconds.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: December 19, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Gene Berdichevsky
  • Patent number: 11843114
    Abstract: A battery electrode composition is provided comprising core-shell composites. Each of the composites may comprise a core and a multi-functional shell.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: December 12, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Bogdan Zdyrko, Igor Luzinov, Vojtech Svoboda, Alexander Jacobs, Eugene Berdichevsky, Hyea Kim
  • Patent number: 11837712
    Abstract: In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: December 5, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Laura Gerber, Adam Kajdos, Justin Yen, Justin Doane, Jens Steiger
  • Patent number: 11837697
    Abstract: In an aspect, a solid-state Li-ion battery (SSLB) cell, may comprise an anode electrode comprising an anode electrode surface and an anode active material, a cathode electrode comprising a cathode electrode surface and an cathode active material, and an inorganic, melt-infiltrated, solid state electrolyte (SSE) ionically coupling the anode electrode and the cathode electrode, wherein at least a portion of at least one of the electrode surfaces comprises an interphase layer separating the respective electrode active material from direct contact with the SSE, and wherein the interphase layer comprises two or more metals from the list of: Zr, Al, K, Cs, Fr, Be, Mg, Ca, Sr, Ba, Sc, Y, La or non-La lanthanoids, Ta, Zr, Hf, and Nb.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: December 5, 2023
    Assignees: GEORGIA TECH RESEARCH CORPORATION, SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Yiran Xiao, Kostiantyn Turcheniuk
  • Patent number: 11791455
    Abstract: In an aspect, a lithium-ion battery anode composition comprises a porous composite particle comprising carbon (C) and an active material comprising silicon (Si), wherein the carbon is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the porous composite particle, ranging from around 10 ? (1 nm) to around 60 ? (6 nm). In a further aspect, a carbon material for use in making an anode composition for use in a Li-ion battery is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the carbon material, ranging from around 10 ? (1 nm) to around 60 ? (6 nm).
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: October 17, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Matthew Clark, Adam Kajdos, Timothy Milakovich, Saujan Sivaram, Valentin Lulevich
  • Publication number: 20230327181
    Abstract: Li-ion batteries are provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and at least one hydrofluoric acid neutralizing agent incorporated into the anode or the separator. Li-ion batteries are also provided that include a cathode, an anode comprising active particles, an electrolyte ionically coupling the anode and the cathode, and a separator electrically separating the anode and the cathode, where the electrolyte may be formed from a mixture of an imide salt and at least one salt selected from the group consisting of LiPF6, LiBF4, and LiClO4. Li-ion battery anodes are also provided that include an active material core and a protective coating at least partially encasing the active material core, where the protective coating comprises a material that is resistant to hydrofluoric acid permeation.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 12, 2023
    Inventors: Gleb YUSHIN, Bogdan ZDYRKO, Kara EVANOFF
  • Publication number: 20230327179
    Abstract: A metal-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and an electrolyte. The anode electrode may, for example, have a capacity loading in the range of about 2 mAh/cm2 to about 10 mAh/cm2 and comprise anode particles that (i) have an average particle size in the range of about 0.2 microns to about 40 microns, (ii) exhibit a volume expansion in the range of about 8 vol. % to about 180 vol. % during one or more charge-discharge cycles of the battery cell, and (iii) exhibit a specific capacity in the range of about 600 mAh/g to about 2600 mAh/g. The electrolyte may comprise, for example, (i) one or more metal-ion salts and (ii) a solvent composition that comprises one or more low-melting point solvents that each have a melting point below about ?70° C. and a boiling point above about +70° C.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Gleb YUSHIN, Ashleigh WARD, Gregory ROBERTS
  • Publication number: 20230322572
    Abstract: A method of making aluminum alkoxide nanowires is disclosed. In some embodiments, the method includes: (1) treating an alloy comprising aluminum (Al) and lithium (Li) with a reactive solvent to form a porous metal comprising Al; and (2) treating the porous metal with an alcohol-comprising solvent to form the Al alkoxide nanowires. In some embodiments, the reactive solvent has a pKa value at 25° C. that is less than 15. In some implementations, water is employed as the reactive solvent and ethanol is employed as the alcohol-comprising solvent. Methods of making Al oxide nanowires, Al hydroxide nanowires, an aerogel, and a lithium-ion battery are also disclosed.
    Type: Application
    Filed: April 11, 2023
    Publication date: October 12, 2023
    Inventors: Gleb YUSHIN, Fujia WANG, Samik JHULKI, Kostiantyn TURCHENIUK
  • Publication number: 20230307153
    Abstract: A catalyst-free synthesis method for the formation of a metalorganic compound comprising a desired (first) metal may include, for example, selecting another (second) metal and an organic solvent, with the second metal being selected to (i) be more reactive with respect to the organic solvent than the first metal and (ii) form, upon exposure of the second metal to the organic solvent, a reaction by-product that is more soluble in the organic solvent than the metalorganic compound. An alloy comprising the first metal and the second metal may be first produced (e.g., formed or otherwise obtained) and then treated with the organic solvent in a liquid phase or a vapor phase to form a mixture comprising (i) the reaction by-product comprising the second metal and (ii) the metalorganic compound comprising the first metal. The metalorganic compound may then be separated from the mixture in the form of a solid.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 28, 2023
    Inventors: Gleb YUSHIN, Eugene Michael BERDICHEVSKY
  • Publication number: 20230299362
    Abstract: An electrolyte for a lithium-ion battery includes a primary lithium salt and a solvent composition. In some implementations, the solvent composition includes fluoroethylene carbonate (FEC), at least one linear ester, and at least one branched ester. In some implementations, a mole fraction of the FEC in the electrolyte is in a range of about 2 mol. % to about 30 mol. %, a total mole fraction of the at least one linear ester and the at least one branched ester in the electrolyte is at least about 45 mol. %, a molar ratio of the at least one linear ester to the at least one branched esters is in a range of about 1:10 to about 20:1, and the electrolyte is substantially free of four-carbon cyclic carbonates. Lithium-ion batteries employing such electrolytes are also disclosed.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 21, 2023
    Inventors: Kostiantyn TURCHENIUK, Natasha TERAN, William GENT, Xiujun YUE, Katherine HARRY, Viacheslav IABLOKOV, Naoki NITTA, Gleb YUSHIN
  • Publication number: 20230291014
    Abstract: In an embodiment, a metal-ion battery cell comprises an anode electrode, a cathode electrode, a separator, and electrolyte ionically coupling the anode electrode and the cathode electrode. The anode electrode is a high-capacity electrode (e.g., in the range of about 2 mAh/cm2 to about 10 mAh/cm2). The electrolyte includes a solvent composition, the solvent composition including low-melting point (LMP) solvent(s) in the range from about 10 vol. % to about 80 vol. % of the solvent composition as well as regular-melting point (RMP) solvent(s) in the range from about 20 vol. % to about 90 vol. % of the solvent composition.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Inventors: Gleb YUSHIN, Ashleigh WARD
  • Publication number: 20230282874
    Abstract: Metal-ion battery cells are provided that take advantage of the disclosed “doping” process. The cells may be fabricated from anode and cathode electrodes, a separator, and an electrolyte. A metal-ion additive may be incorporated into (i) one or more of the electrodes, (ii) the separator, or (iii) the electrolyte. The metal-ion additive provides additional donor ions corresponding to the metal ions stored and released by anode and cathode active material particles. An activation potential may then be applied to the anode and cathode electrodes to release the additional donor ions into the battery cell.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Inventors: Gleb YUSHIN, Bogdan ZDYRKO, Alexander Thomas JACOBS, Eugene Michael BERDICHEVSKY
  • Publication number: 20230282830
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10-13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Application
    Filed: May 9, 2023
    Publication date: September 7, 2023
    Inventors: Gleb YUSHIN, Adam KAJDOS