Patents by Inventor Glen Babcock

Glen Babcock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081313
    Abstract: A delivery device and system to supplement CO2 in an underwater environment without the need for electricity or the use of compressed CO2. The device consists of a container containing a biological organism such as mycelium and including an exit portal for CO2 to enter the underwater environment. The device may also incorporate a separation device to delay and control the flow of CO2. The system requires the device to be held in place through a securing point in the underwater environment. The minimum requirements for the device are described, but in certain instances it will be preferably used with a double-bag or an outer shell housing to protect or aesthetically conceal the placement underwater. The use of this device and system to supplement carbon dioxide in water will span many industries and applications. It will assist with mosquito trapping. It will also supplement CO2 in underwater growing environments.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 11839204
    Abstract: A delivery device and system to supplement CO2 in an underwater environment without the need for electricity or the use of compressed CO2. The device consists of a container containing a biological organism such as mycelium and including an exit portal for CO2 to enter the underwater environment. The device may also incorporate a separation device to delay and control the flow of CO2. The system requires the device to be held in place through a securing point in the underwater environment. The minimum requirements for the device are described, but in certain instances it will be preferably used with a double-bag or an outer shell housing to protect or aesthetically conceal the placement underwater. The use of this device and system to supplement carbon dioxide in water will span many industries and applications. It will assist with mosquito trapping. It will also supplement CO2 in underwater growing environments.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 12, 2023
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 11612158
    Abstract: A water movement system and method configured to eradicate and/or control mosquito or insect populations that lay eggs in treated, stagnant water environments. The system is comprised of a water pump configured to function in cooperation with an underwater insect attractant device. The insect attractant device is suitably constructed to generate carbon dioxide for attracting insects to a water extermination zone or trap. In one embodiment, the underwater insect attractant device contains organisms such as mycelia for generating the carbon dioxide. Insects are attracted by the carbon dioxide generation device to reproduce in the water extermination zone, using the treated water to lay eggs, and grow larvae and pupae for the subject insects. A solar-powered water pump device is configured to direct the flow of water from the water extermination zone toward filters of the water pump device to trap and kill insect progeny including eggs, larvae, and pupae.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: March 28, 2023
    Assignee: Glen Babcock and Wendy Babcock Garrett
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20210037802
    Abstract: A water movement system and method configured to eradicate and/or control mosquito or insect populations that lay eggs in treated, stagnant water environments. The system is comprised of a water pump configured to function in cooperation with an underwater insect attractant device. The insect attractant device is suitably constructed to generate carbon dioxide for attracting insects to a water extermination zone or trap. In one embodiment, the underwater insect attractant device contains organisms such as mycelia for generating the carbon dioxide. Insects are attracted by the carbon dioxide generation device to reproduce in the water extermination zone, using the treated water to lay eggs, and grow larvae and pupae for the subject insects. A solar-powered water pump device is configured to direct the flow of water from the water extermination zone toward filters of the water pump device to trap and kill insect progeny including eggs, larvae, and pupae.
    Type: Application
    Filed: January 25, 2019
    Publication date: February 11, 2021
    Inventors: Nathaniel J. Martin, Glen Babcock, Wendy Babcock Garrett, James M. Martin, Frank S. Martin
  • Publication number: 20210015086
    Abstract: A delivery device and system to supplement CO2 in an underwater environment without the need for electricity or the use of compressed CO2. The device consists of a container containing a biological organism such as mycelium and including an exit portal for CO2 to enter the underwater environment. The device may also incorporate a separation device to delay and control the flow of CO2. The system requires the device to be held in place through a securing point in the underwater environment. The minimum requirements for the device are described, but in certain instances it will be preferably used with a double-bag or an outer shell housing to protect or aesthetically conceal the placement underwater. The use of this device and system to supplement carbon dioxide in water will span many industries and applications. It will assist with mosquito trapping. It will also supplement CO2 in underwater growing environments.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 10827736
    Abstract: A delivery device and system to supplement CO2 in an underwater environment without the need for electricity or the use of compressed CO2. The device consists of a container containing a biological organism such as mycelium and including an exit portal for CO2 to enter the underwater environment. The device may also incorporate a separation device to delay and control the flow of CO2. The system requires the device to be held in place through a securing point in the underwater environment. The minimum requirements for the device are described, but in certain instances it will be preferably used with a double-bag or an outer shell housing to protect or aesthetically conceal the placement underwater. The use of this device and system to supplement carbon dioxide in water will span many industries and applications. It will assist with mosquito trapping. It will also supplement CO2 in underwater growing environments.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: November 10, 2020
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 10512223
    Abstract: A consumer product for supplementing CO2 is provided with delayed activation control and multiple chambers formed by folding and clamping or with multiple clamps. A bag, having a top and a bottom seal and a filter, contains organisms and food substrate, each prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. The mycelial mass having mycelia and food, or mycelia separate from the food may be sealed or partially sealed away from the air exchange portal by clamps or folds. With selective chamber isolation, the organisms are manipulated to delay optimized carbon dioxide generation. Utilizing the present invention will extend the product shelf-life, delaying the expiration of the product for storage and shipping. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: December 24, 2019
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20180295830
    Abstract: A delivery device and system to supplement CO2 in an underwater environment without the need for electricity or the use of compressed CO2. The device consists of a container containing a biological organism such as mycelium and including an exit portal for CO2 to enter the underwater environment. The device may also incorporate a separation device to delay and control the flow of CO2. The system requires the device to be held in place through a securing point in the underwater environment. The minimum requirements for the device are described, but in certain instances it will be preferably used with a double-bag or an outer shell housing to protect or aesthetically conceal the placement underwater. The use of this device and system to supplement carbon dioxide in water will span many industries and applications. It will assist with mosquito trapping. It will also supplement CO2 in underwater growing environments.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 18, 2018
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20180177142
    Abstract: A consumer product for supplementing CO2 is provided with delayed activation control and multiple chambers formed by folding and clamping or with multiple clamps. A bag, having a top and a bottom seal and a filter, contains organisms and food substrate, each prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. The mycelial mass having mycelia and food, or mycelia separate from the food may be sealed or partially sealed away from the air exchange portal by clamps or folds. With selective chamber isolation, the organisms are manipulated to delay optimized carbon dioxide generation. Utilizing the present invention will extend the product shelf-life, delaying the expiration of the product for storage and shipping. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants.
    Type: Application
    Filed: January 15, 2018
    Publication date: June 28, 2018
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 9867337
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 16, 2018
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 9854745
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 2, 2018
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 9750196
    Abstract: Carbon dioxide benefits plants in restricted indoor growing areas. Plants will deplete carbon dioxide levels in an indoor environment over time. The present invention provides a process design, system, and apparatus for a controlled, non-electrical, non-heat generating, non-mechanical, production source of CO2. The source of CO2 is fungi inoculated into a scientifically sterilized, enclosed growth medium prepared in a laboratory setting. The fungi is provided with an optimum food source from which the fungi may produce CO2 for at least six months. The CO2 produced is passively transferred from the fungi growing environment to an indoor plant growing environment under the optimization of the present invention. The transfer is non-electrical and preferably occurs through a gaseous interchange portal system which provides an interface between the fungi's enclosed plastic bag and the surrounding plant-growing environment.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 5, 2017
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20170202153
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 20, 2017
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20170181381
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Application
    Filed: March 7, 2017
    Publication date: June 29, 2017
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: 9622421
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: April 18, 2017
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20150373920
    Abstract: A consumer product for supplementing carbon dioxide is provided with delayed activation control in the form of a clamp. A bag, having a top and a bottom seal and a filter, contains a mycelial mass prepared under sterile laboratory conditions using aseptic techniques. The bag may be selectively clamped at various locations on its exterior. During manufacturing, the mycelial mass is sealed away from the air exchange portal by the clamp. The manipulation delays the optimized carbon dioxide generation and extends the product shelf-life significantly. The fungi are utilized on-demand by removal of the clamp and carbon dioxide flows from the product. Consumers will place the product near indoor plants. The precise clamping method delays the expiration of the product for storage and shipping optimization. The clamp is relocated to the top of the bag in order to provide a hanger for the carbon dioxide generator above plant level.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 31, 2015
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Publication number: 20150250103
    Abstract: Carbon dioxide benefits plants in restricted indoor growing areas. Plants will deplete carbon dioxide levels in an indoor environment over time. The present invention provides a process design, system, and apparatus for a controlled, non-electrical, non-heat generating, non-mechanical, production source of CO2. The source of CO2 is fungi inoculated into a scientifically sterilized, enclosed growth medium prepared in a laboratory setting. The fungi is provided with an optimum food source from which the fungi may produce CO2 for at least six months. The CO2 produced is passively transferred from the fungi growing environment to an indoor plant growing environment under the optimization of the present invention. The transfer is non-electrical and preferably occurs through a gaseous interchange portal system which provides an interface between the fungi's enclosed plastic bag and the surrounding plant-growing environment.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 10, 2015
    Inventors: Glen Babcock, Wendy Babcock Garrett
  • Patent number: D790986
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: July 4, 2017
    Inventor: Glen Babcock