Patents by Inventor Glen Dunham

Glen Dunham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160047362
    Abstract: A phase-change device for use in a volume of fluid, comprising a pressure vessel; a displacement cylinder; a displacement piston; a drive cylinder containing a phase-change material; a drive piston; and a gas spring. As the device sinks and experiences cooler fluid temperatures, the phase change material reduces in volume, causing the drive cylinder to move relative to the drive piston and thereby exert an outward force on the displacement piston. The displacement piston is pulled away from the displacement cylinder, increasing the overall displacement of the device. The increase in displacement increases the buoyancy of the device, thereby causing the device to rise in the fluid.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: Glen Dunham, Loran Ambs
  • Publication number: 20050258578
    Abstract: Porous ceramic and hybrid ceramic films are useful as low dielectric constant interlayers in semiconductor interconnects. (Hybrid ceramic films are defined as films that contain organic and ceramic molecular components in the structure, as, for example, organosilicates). This invention describes the usefulness of humidity treatments (using specific temperature/humidity treatments as illustrative examples) in increasing mechanical integrity of porous dielectric films with minimal detrimental effect on film porosity or dielectric constant and with no adverse impact on film quality. The efficacy of such treatments is illustrated using surfactant-templated mesoporous silicate films as an example. This invention also describes a specific family of additives to be used with highly pure alkali-metal-free ceramic and hybrid precursors for such dielectric films that will enable better control of the film porosity and quality and lower dielectric constants with the required mechanical integrity.
    Type: Application
    Filed: September 14, 2001
    Publication date: November 24, 2005
    Inventors: Jerome Birnbaum, Glen Fryxell, Shari Xiaohong, Christopher Coyle, Glen Dunham, Suresh Baskaran, Ralph Williford
  • Publication number: 20040089238
    Abstract: Vacuum/gas phase reactor embodiments used in gas phase dehydroxylation and alkylation reactions are described in which the substrate could be subjected to high vacuum, heated to target temperature, and treated with silane as quickly and efficiently as possible. To better facilitate the silylation and to increase the efficiency of the process, the reactor is designed to contain quasi-catalytic surfaces which can act both as an “activator” to put species in a higher energy state or a highly activated state, and as a “scrubber” to eliminate possible poisons or reactive by-products generated in the silylation reactions. One described embodiment is a hot filament reactor having hot, preferably metallic, solid surfaces within the reactor's chamber in which wafers having mesoporous silicate films are treated. Another is an IR reactor having upper and lower quartz windows sealing the upper and lower periphery of an aluminum annulus to form a heated chamber.
    Type: Application
    Filed: March 3, 2003
    Publication date: May 13, 2004
    Inventors: Jerome Birnbaum, Gary Maupin, Glen Dunham, Glen Fryxell, Suresh Baskaran
  • Patent number: 6548113
    Abstract: Vacuum/gas phase reactor embodiments used in gas phase dehydroxylation and alkylation reactions are described in which the substrate could be subjected to high vacuum, heated to target temperature, and treated with silane as quickly and efficiently as possible. To better facilitate the silylation and to increase the efficiency of the process, the reactor is designed to contain quasi-catalytic surfaces which can act both as an “activator” to put species in a higher energy state or a highly activated state, and as a “scrubber” to eliminate possible poisons or reactive by-products generated in the silylation reactions. One described embodiment is a hot filament reactor having hot, preferably metallic, solid surfaces within the reactor's chamber in which wafers having mesoporous silicate films are treated. Another is an IR reactor having upper and lower quartz windows sealing the upper and lower periphery of an aluminum annulus to form a heated chamber.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: April 15, 2003
    Assignee: Pacific Northwest Division
    Inventors: Jerome Birnbaum, Gary Maupin, Glen Dunham, Glen Fryxell, Suresh Baskaran