Patents by Inventor Glenn Batchelor

Glenn Batchelor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850842
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 26, 2023
    Assignee: XEROX CORPORATION
    Inventors: Patrick Jun Howe, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Douglas K. Herrmann, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Joseph C. Sheflin, Emmett James Spence, Robert Jian Zhang, Megan Zielenski
  • Patent number: 11697296
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: July 11, 2023
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Linn C. Hoover, Patrick Jun Howe, Joseph C. Sheflin, Robert Jian Zhang, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Erwin Ruiz, Emmett James Spence, Rachel Lynn Tanchak, Kareem Tawil, Carlos M. Terrero, Megan Zielenski
  • Patent number: 11652931
    Abstract: An MFD is disclosed. For example, the MFD includes a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include receiving an email, determining that a user wants to establish a connection based on the email, generating a reply email to the user, wherein the reply email includes an executable file that automatically configures an endpoint device of the user to establish the connection, transmitting the reply email to the user, and establishing the connection to the endpoint device of the user in response to execution of the executable file by the endpoint device of the user.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: May 16, 2023
    Assignee: Xerox Corporation
    Inventors: Timothy P. Foley, Patrick J. Howe, Richard A. Kalb, Glenn Batchelor, Ali R. Dergham
  • Publication number: 20230079365
    Abstract: An MFD is disclosed. For example, the MFD includes a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include receiving an email, determining that a user wants to establish a connection based on the email, generating a reply email to the user, wherein the reply email includes an executable file that automatically configures an endpoint device of the user to establish the connection, transmitting the reply email to the user, and establishing the connection to the endpoint device of the user in response to execution of the executable file by the endpoint device of the user.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 16, 2023
    Inventors: Timothy P. Foley, Patrick J. Howe, Richard A. Kalb, Glenn Batchelor, Ali R. Dergham
  • Publication number: 20220305819
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Patrick Jun HOWE, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Douglas K. HERRMANN, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Joseph C. SHEFLIN, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220305815
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Douglas K. HERRMANN, Linn C. HOOVER, Patrick Jun HOWE, Joseph C. SHEFLIN, Robert Jian ZHANG, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Erwin RUIZ, Emmett James SPENCE, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO, Megan ZIELENSKI
  • Patent number: 11117774
    Abstract: A system for controlling curl in sheets passing beneath a camera includes applying a thin layer of high velocity air to a curved baffle positioned beneath the camera. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert sheets (Bernoulli effect) towards the curved baffle. By positioning the curved baffle along the media paper path and by applying a uniform air stream to it, a lower pressure area will be created. This will flatten the trajectory of the sheets and thereby remove curl before the sheets pass the camera.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 14, 2021
    Assignee: XEROX CORPORATION
    Inventors: Rachel Lynn Tanchak, Erwin Ruiz, Carlos M Terrero, Roberto A Irizarry, Glenn Batchelor, Ali R Dergham
  • Patent number: 11046544
    Abstract: An apparatus for controlling cross curl in corners of sheets between in-line transports includes a curved baffle placed between the two transports. A thin layer of high velocity air is applied to the curved baffle only at lead edge corner regions of the sheets. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert corners of the sheets (Bernoulli effect) towards the curved baffle. By positioning a curved baffle between the two transports and by applying a uniform air stream to it, a lower pressure area will be created. This will flatten the corners of the sheets and ensure passage between downstream baffles and acquisition by a downstream transport.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 29, 2021
    Assignee: Xerox Corporation
    Inventors: Roberto A Irizarry, Glenn Batchelor, Rachel Lynn Tanchak, Ali R Dergham, Erwin Ruiz
  • Publication number: 20200339373
    Abstract: An apparatus for controlling cross curl in corners of sheets between in-line transports includes a curved baffle placed between the two transports. A thin layer of high velocity air is applied to the curved baffle only at lead edge corner regions of the sheets. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert corners of the sheets (Bernoulli effect) towards the curved baffle. By positioning a curved baffle between the two transports and by applying a uniform air stream to it, a lower pressure area will be created. This will flatten the corners of the sheets and ensure passage between downstream baffles and acquisition by a downstream transport.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: ROBERTO A. IRIZARRY, GLENN BATCHELOR, RACHEL LYNN TANCHAK, ALI R. DERGHAM, ERWIN RUIZ
  • Publication number: 20200339371
    Abstract: A system for controlling curl in sheets passing beneath a camera includes applying a thin layer of high velocity air to a curved baffle positioned beneath the camera. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert sheets (Bernoulli effect) towards the curved baffle. By positioning the curved baffle along the media paper path and by applying a uniform air stream to it, a lower pressure area will be created. This will flatten the trajectory of the sheets and thereby remove curl before the sheets pass the camera.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: RACHEL LYNN TANCHAK, ERWIN RUIZ, CARLOS M. TERRERO, ROBERTO A. IRIZARRY, GLENN BATCHELOR, ALI R DERGHAM
  • Publication number: 20200339374
    Abstract: An apparatus for controlling curl in sheets between two transports includes a curved baffle placed between the two transports. A thin layer of high velocity air is applied to the curved baffle. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert sheets (Bernoulli effect) towards the curved baffle. By positioning the curved baffle between the two transports and by applying a uniform air stream to it, a lower pressure area will be created. This will flatten the trajectory of the sheets and ensure acquisition by the downstream transport.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Carlos M. Terrero, Rachel Lynn Tanchak, Roberto A. Irizarry, Erwin Ruiz, Ali R. Dergham, Glenn Batchelor
  • Patent number: 8862017
    Abstract: An acoustic cavity conditions the air flowing from a blower to reduce noise in the airflow. The air flowing directly out of the blower exhibits pulses produced by each impeller blade or fan blade. The airflow noise is thereby induced at certain frequencies. Printing operations inside a printer can also occur at specific frequencies. Introducing the airflow directly into certain areas of a printer can result in the noise frequencies and printing frequencies to combine and produce noticeable printing artifacts. An acoustic cavity tuned to dampen the airflow noise can condition the airflow and eradicate the printing artifacts.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 14, 2014
    Assignee: Xerox Corporation
    Inventors: Jorge Rodriguez, Glenn Batchelor, Francisco Zirilli, Ali Dergham
  • Publication number: 20130188984
    Abstract: An acoustic cavity conditions the air flowing from a blower to reduce noise in the airflow. The air flowing directly out of the blower exhibits pulses produced by each impeller blade or fan blade. The airflow noise is thereby induced at certain frequencies. Printing operations inside a printer can also occur at specific frequencies. Introducing the airflow directly into certain areas of a printer can result in the noise frequencies and printing frequencies to combine and produce noticeable printing artifacts. An acoustic cavity tuned to dampen the airflow noise can condition the airflow and eradicate the printing artifacts.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: XEROX CORPORATION
    Inventors: Jorge Rodriguez, Glenn Batchelor, Francisco Zirilli, Ali Dergham