Patents by Inventor Glenn D. Fisseler

Glenn D. Fisseler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090027999
    Abstract: A seismic exploration method and unit comprised of continuous recording, self-contained wireless seismometer units or pods. The self-contained unit may include a tilt meter, a compass and a mechanically gimbaled clock platform. Upon retrieval, seismic data recorded by the unit can be extracted and the unit can be charged, tested, re-synchronized, and operation can be re-initiated without the need to open the unit's case. The unit may include an additional geophone to mechanically vibrate the unit to gauge the degree of coupling between the unit and the earth. The unit may correct seismic data for the effects of crystal aging arising from the clock. Deployment location of the unit may be determined tracking linear and angular acceleration from an initial position. The unit may utilize multiple geophones angularly oriented to one another in order to redundantly measure seismic activity in a particular plane.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 29, 2009
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood
  • Publication number: 20090016157
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: December 21, 2007
    Publication date: January 15, 2009
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20080279636
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: December 21, 2007
    Publication date: November 13, 2008
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20080192569
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: December 21, 2007
    Publication date: August 14, 2008
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20080181055
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 31, 2008
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20080137485
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 12, 2008
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 7310287
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: December 18, 2007
    Assignee: Fairfield Industries Incorporated
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood
  • Patent number: 7286442
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: October 23, 2007
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood
  • Patent number: 7254093
    Abstract: A seismic data collection unit having multiple separate geophones/geophone packages positioned in a housing wherein the geophones are offset from a vertical axis so that summing of the geophones' respective outputs minimizes certain noise in the unit's output. Specifically, the offset geophones are physically positioned or mathematically configured so as to be symmetrical about a selected vertical axis in order to cancel out certain noise in a seismic signal. The particular placement of the geophones within the housing is preferably selected so that the vertical axis around which the geophones are positioned passes through the center of gravity of the unit.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: August 7, 2007
    Assignee: Fairfield, Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 7124028
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: October 17, 2006
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20040257913
    Abstract: A seismic exploration method and unit comprised of continuous recording, self-contained wireless seismometer units or pods. The self-contained unit may include a tilt meter, a compass and a mechanically gimbaled clock platform. Upon retrieval, seismic data recorded by the unit can be extracted and the unit can be charged, tested, re-synchronized, and operation can be re-initiated without the need to open the unit's case. The unit may include an additional geophone to mechanically vibrate the unit to gauge the degree of coupling between the unit and the earth. The unit may correct seismic data for the effects of crystal aging arising from the clock. Deployment location of the unit may be determined tracking linear and angular acceleration from an initial position. The unit may utilize multiple geophones angularly oriented to one another in order to redundantly measure seismic activity in a particular plane.
    Type: Application
    Filed: January 28, 2004
    Publication date: December 23, 2004
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood
  • Patent number: 5303202
    Abstract: A method for a seismic data acquisition system (FIG. 1) for determining whether a geophone circuit break is in a seismic cable conductor pair (22) or in a takeout conductor pair (26). A resistor (32, 32A) is positioned across the takeout conductor pair (26) for a geophone group (20). An impedance measuring device (30) determines if the break is in the seismic cable conductor pair (22) by measuring infinity for an open circuit, or by measuring the impedance of the resistor (32, 32A) if the break is in the takeout conductor pair (26).
    Type: Grant
    Filed: September 1, 1993
    Date of Patent: April 12, 1994
    Inventors: Paul E. Carroll, Glenn D. Fisseler