Patents by Inventor Glenn J. Leedy

Glenn J. Leedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6563224
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 13, 2003
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 6551857
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: April 22, 2003
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20030057564
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: August 19, 2002
    Publication date: March 27, 2003
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20020135075
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: May 15, 2002
    Publication date: September 26, 2002
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20020132465
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: May 13, 2002
    Publication date: September 19, 2002
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20010033030
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: February 6, 2001
    Publication date: October 25, 2001
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 6208545
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: March 27, 2001
    Inventor: Glenn J. Leedy
  • Patent number: 6133640
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 .mu.m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: October 17, 2000
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5915167
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 .mu.m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: June 22, 1999
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5725995
    Abstract: Each transistor or logic unit on an integrated circuit wafer is tested prior to interconnect metallization. By means of CAD software, the transistor or logic units placement net list is revised to substitute redundant defect-free logic units for defective ones. Then the interconnect metallization is laid down and patterned under control of a CAD computer system. Each die in the wafer thus has its own interconnect scheme, although each die is functionally equivalent, and yields are much higher than with conventional testing at the completed circuit level.The individual transistor or logic unit testing is accomplished by a specially fabricated flexible tester surface made in one embodiment of several layers of flexible silicon dioxide, each layer containing vias and conductive traces leading to thousands of microscopic metal probe points on one side of the test surface. The probe points electrically contact the contacts on the wafer under test by fluid pressure.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 10, 1998
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5654127
    Abstract: Each transistor or logic unit on an integrated circuit wafer is tested prior to interconnect metallization. By means of CAD software, the transistor or logic units placement net list is revised to substitute redundant defect-free logic units for defective ones. Then the interconnect metallization is laid down and patterned under control of a CAD computer system. Each die in the wafer thus has its own interconnect scheme, although each die is functionally equivalent, and yields are much higher than with conventional testing at the completed circuit level.The individual transistor or logic unit testing is accomplished by a specially fabricated flexible tester surface made in one embodiment of several layers of flexible silicon dioxide, each layer containing vias and conductive traces leading to thousands of microscopic metal probe points on one side of the test surface. The probe points electrically contact the contacts on the wafer under test by fluid pressure.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5637907
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 10, 1997
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5633209
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 27, 1997
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5629137
    Abstract: Each transistor or logic unit on an integrated circuit wafer is tested prior to interconnect metallization. By means of CAD software, the transistor or logic units placement net list is revised to substitute redundant defect-free logic units for defective ones. Then the interconnect metallization is laid down and patterned under control of a CAD computer system. Each die in the wafer thus has its own interconnect scheme, although each die is functionally equivalent, and yields are much higher than with conventional testing at the completed circuit level.The individual transistor or logic unit testing is accomplished by a specially fabricated flexible tester surface made in one embodiment of several layers of flexible silicon dioxide, each layer containing vias and conductive traces leading to thousands of microscopic metal probe points on one side of the test surface. The probe points electrically contact the contacts on the wafer under test by fluid pressure.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 13, 1997
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5592018
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 7, 1997
    Inventor: Glenn J. Leedy
  • Patent number: 5592007
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 7, 1997
    Inventor: Glenn J. Leedy
  • Patent number: 5580687
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 3, 1996
    Inventor: Glenn J. Leedy
  • Patent number: 5571741
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 5, 1996
    Inventor: Glenn J. Leedy
  • Patent number: 5512397
    Abstract: Large scale integrated circuits are fabricated using redundant circuit elements to replace defective circuit elements by discretionary interconnect changes as determined by fine-grain testing of the integrated circuits after the logic units (such as individual transistors or logic gates) are fabricated and before they are electrically interconnected. The redundant circuit elements are then interconnected to non-defective circuit elements by one of two methods. In the first method a stepper-scanner apparatus modified to expose most of a resist layer defines the interconnect circuitry, but is shuttered-off over the discretionary interconnect changes. Then the discretionary interconnect changes are exposed by a conventional direct write on wafer pattern generation apparatus. In the second method, the interconnect patterning is accomplished by first fabricating a fixed custom mask defining the interconnect layer for a particular lot size (such as 100) of wafers.
    Type: Grant
    Filed: November 2, 1993
    Date of Patent: April 30, 1996
    Inventor: Glenn J. Leedy
  • Patent number: 5451489
    Abstract: Each transistor or logic unit on an integrated circuit wafer is tested prior to interconnect metallization. By means of CAD software, the transistor or logic units placement net list is revised to substitute redundant defect-free logic units for defective ones. Then the interconnect metallization is laid down and patterned under control of a CAD computer system. Each die in the wafer thus has its own interconnect scheme, although each die is functionally equivalent, and yields are much higher than with conventional testing at the completed circuit level.The individual transistor or logic unit testing is accomplished by a specially fabricated flexible tester surface made in one embodiment of several layers of flexible silicon dioxide, each layer containing vias and conductive traces leading to thousands of microscopic metal probe points on one side of the test surface. The probe points electrically contact the contacts on the wafer under test by fluid pressure.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: September 19, 1995
    Inventor: Glenn J. Leedy