Patents by Inventor Glenn Mitchell

Glenn Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9273227
    Abstract: Waterborne aqueous-alcohol soluble protein compositions, methods of making the compositions, and applications thereof are disclosed. The dispersion compositions include protein, water, acid, and optionally an ester of a carboxylic acid. The methods of making the compositions including combining the protein, water, acid and optionally ester to form a dispersion without the benefit of alcohol. Applications include industrial and food applications, such as binders and coatings, for example paint binders or coatings for paper products and pharmaceuticals.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 1, 2016
    Assignee: POET RESEARCH, INC.
    Inventors: Leif Sedgewick Freeman, John Warrent Lawton, Jr., Melvin Glenn Mitchell, Marvin Lynn Mitchell, Laura Martin
  • Patent number: 9273417
    Abstract: A versatile binder comprising at least one or more sulfopolyesters is provided. These sulfopolyester binders can enhance the dry tensile strength, wet tensile strength, tear force, and burst strength of the nonwoven articles in which they are incorporated. Additionally, the water permeability of these binders can be modified as desired by blending different types of sulfopolyesters to produce the binder. Therefore, the binder can be used in a wide array of nonwoven end products and can be modified accordingly based on the desired properties sought in the nonwoven products.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 1, 2016
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz, Mark Dwight Clark, Chris Delbert Anderson, Marvin Lynn Mitchell, Paula Hines Mitchell, Amber Layne Wolfe
  • Publication number: 20150218367
    Abstract: The extrudable composition may be an extrudable composition having a heat deflection temperature greater than about 50° C. and a melting point between about 80° C. to about 190° C., the extrudable composition includes about 60 to about 99.8% partially crystalline or crystalline polylactic acid, about 0.05 to about 8% cyclodextrin, about 0.1 to about 8% natural oil, fatty acid, fatty acid ester, wax or waxy ester, about 0.01 to about 5% nanofibers, about 0 to about 10% crystallinity agent, about 0 to about 1% starch-based melt rheology modifier, about 0 to about 5% colorant, about 0 to about 1% plasticizer, about 0 to about 1% gloss agent, and about 0 to about 1% barrier agent.
    Type: Application
    Filed: September 24, 2013
    Publication date: August 6, 2015
    Inventors: Richard Peter Scalzo, James Etson Brandenburg, Marvin Lynn Mitchell, Paula Hines Mitchell, Melvin Glenn Mitchell, Cynthia Gail Mitchell, Thomas Jason Wolfe, Amber Layne Wolfe
  • Publication number: 20150165173
    Abstract: A control system for an arterial catheter operable to selectively impede blood flow includes a processor and a storage medium accessible to the processor that bears instructions which when executed by the processor cause the processor to execute logic including receiving a first signal representing a physical parameter associated with a patient in whom the catheter is disposed, receiving a second signal representative of time, and causing inflation of a first balloon on the catheter to impede blood flow in the first artery. Based at least in part on the first signal satisfying a first condition, the instructions include causing deflation of the first balloon. Based at least in part on the second signal indicating elapse of a predetermined time period, the instructions include causing deflation of the first balloon regardless of whether the first signal satisfies the first condition.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: ZOLL CIRCULATION, INCORPORATED
    Inventors: Richard A. Helkowski, Mark Glenn Mitchell
  • Publication number: 20150165174
    Abstract: A control system for an arterial catheter operable to selectively impede blood flow includes a processor and a storage medium accessible to the processor that bears instructions which when executed by the processor cause the processor to execute logic including receiving a first signal representing a physical parameter associated with a patient in whom the catheter is disposed, receiving a second signal representative of time, and causing inflation of a first balloon on the catheter to impede blood flow in the first artery. Based at least in part on the first signal satisfying a first condition, the instructions include causing deflation of the first balloon. Based at least in part on the second signal indicating elapse of a predetermined time period, the instructions include causing deflation of the first balloon regardless of whether the first signal satisfies the first condition.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: ZOLL CIRCULATION, INCORPORATED
    Inventors: Richard A. Helkowski, Mark Glenn Mitchell
  • Patent number: 8932406
    Abstract: The molecular etcher carbonyl fluoride (COF2) or any of its variants, are provided for, according to the present invention, to increase the efficiency of etching and/or cleaning and/or removal of materials such as the unwanted film and/or deposits on the chamber walls and other components in a process chamber or substrate (collectively referred to herein as “materials”). The methods of the present invention involve igniting and sustaining a plasma, whether it is a remote or in-situ plasma, by stepwise addition of additives, such as but not limited to, a saturated, unsaturated or partially unsaturated perfluorocarbon compound (PFC) having the general formula (CyFz) and/or an oxide of carbon (COx) to a nitrogen trifluoride (NF3) plasma into a chemical deposition chamber (CVD) chamber, thereby generating COF2. The NF3 may be excited in a plasma inside the CVD chamber or in a remote plasma region upstream from the CVD chamber.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 13, 2015
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Ramkumar Subramanian, Carrie L. Wyse, Robert Torres, Jr.
  • Publication number: 20140251180
    Abstract: Waterborne aqueous-alcohol soluble protein compositions, methods of making the compositions, and applications thereof are disclosed. The dispersion compositions include protein, water, acid, and optionally an ester of a carboxylic acid. The methods of making the compositions including combining the protein, water, acid and optionally ester to form a dispersion without the benefit of alcohol. Applications include industrial and food applications, such as binders and coatings, for example paint binders or coatings for paper products and pharmaceuticals.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Inventors: Leif Sedgewick Freeman, John Warren Lawton, JR., Melvin Glenn Mitchell, Marvin Lynn Mitchell
  • Publication number: 20140087108
    Abstract: Thus, the extrudable composition may comprise an extrudable composition having a heat deflection temperature greater than about 50° C. and a melting point between 80° C. to 190° C., the extrudable composition comprises 0 to 100% amorphous polylactic acid, 0 to 100% crystalline polylactic acid, 0.1 to 4% natural oil, 0.01 to 5% nanofibers, 0.05 to 8% cyclodextrin, 0 to 10% crystallinity agent, 0 to 1% starch-based melt rheology modifier, 0 to 1% polysaccharide crystallinity retarder, 0 to 1% natural wax, and 0 to 1% plasticizer.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 27, 2014
    Applicant: EARTH RENEWABLE TECHNOLOGIES
    Inventors: Richard Peter Scalzo, James Etson Brandenburg, Marvin Lynn Mitchell, Paula Hines Mitchell, Melvin Glenn Mitchell, Cynthia Gail Mitchell, Thomas Jason Wolfe, Amber Layne Wolfe
  • Publication number: 20140060574
    Abstract: The present invention discloses new chamber clean chemistries for low temperature, gas phase, in-situ removal of fluorine doped tin oxide (FTO) films. These new in-situ cleaning chemistries will enable solar glass and low-emissivity glass manufacturers to improve the quality of FTO films produced, as well as reduce costs associated manual cleaning of FTO deposition systems. The end result is increased production throughput and better quality FTO films. This is achieved by using gas phase, in-situ cleaning molecules, such as, but not limited to, HI, CH3I, and HBr, in the FTO deposition chamber to remove unwanted buildup of FTO from chamber walls and components. Significant revenue can be derived from this customer benefit through molecule and technology solution sales related to in-situ FTO TCO chamber cleaning.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 6, 2014
    Applicant: MATHESON TRI-GAS
    Inventors: Carrie Wyse, Glenn Mitchell, Robert Torres, JR., Ramkumar Subramanian, Matt Shinriki
  • Publication number: 20140060571
    Abstract: The molecular etcher carbonyl fluoride (COF2) or any of its variants, are provided for, according to the present invention, to increase the efficiency of etching and/or cleaning and/or removal of materials such as the unwanted film and/or deposits on the chamber walls and other components in a process chamber or substrate (collectively referred to herein as “materials”). The methods of the present invention involve igniting and sustaining a plasma, whether it is a remote or in-situ plasma, by stepwise addition of additives, such as but not limited to, a saturated, unsaturated or partially unsaturated perfluorocarbon compound (PFC) having the general formula (CyFz) and/or an oxide of carbon (COx) to a nitrogen trifluoride (NF3) plasma into a chemical deposition chamber (CVD) chamber, thereby generating COF2. The NF3 may be excited in a plasma inside the CVD chamber or in a remote plasma region upstream from the CVD chamber.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Ramkumar Subramanian, Carrie L. Wyse, Robert Torres, JR.
  • Publication number: 20140037575
    Abstract: Wild Game Drops is a soy wax drop impregnated with game animal liquid urine or fragrance oil. These drops are 100% biodegradable, non-toxic, environmentally safe and made from 100% dehydrogenated soy oil. The drops are used by a “hunter” as a wild game animal attractant or lure. The Wax is poured into a mold, frozen and released then bagged into individual bags for a no mess application. The drops can be placed anytime during the hunting process to allow the urine or fragrance oil to permeate into the air. The drops do not have to be melted as they will slowly release the scent as the day warms. Animals are attracted to the soy wax drops due to the different types of urine or fragrance oil used.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Inventors: Cheryl Lynn Mitchell, Robert Glenn Mitchell
  • Patent number: 8623148
    Abstract: Methods of cleaning a processing chamber with nitrogen trifluoride (NF3) are described. The methods involve a concurrent introduction of nitrogen trifluoride and a reactive diluent into the chamber. The NF3 may be excited in a plasma inside the chamber or in a remote plasma region upstream from the chamber. The reactive diluent may be introduced upstream or downstream of the remote plasma such that both NF3 and the reactive diluent (and any plasma-generated effluents) are present in the chamber during cleaning. The presence of the reactive diluent enhances the chamber-cleaning effectiveness of the NF3.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 7, 2014
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Robert Torres, Jr., Adam Seymour
  • Publication number: 20130299108
    Abstract: A short-cut microfiber-containing mixture is provided comprising a plurality of water non-dispersible short-cut polymer microfibers having a fineness of 0.5 d/f or less; water; and a sulfopolyester dispersed in said water, wherein the sulfopolyester has a glass transition temperature (Tg) of at least 40° C., and wherein the sulfopolyester exhibits a melt viscosity of less than about 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell
  • Patent number: 8513147
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 20, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell
  • Patent number: 8512519
    Abstract: Sulfopolyester thermoplastic resins provide advantages in papermaking processes and in paper products including paperboard. Improvements in wet strength and dry strength of paper products are achieved by addition of sulfopolyester thermoplastic resins and cationic strength additives during the paper making process. The use of sulfopolyester thermoplastic resins in paper products also significantly enhances the repulpability of the paper.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell, Marvin Lynn Mitchell
  • Publication number: 20130014673
    Abstract: The invention relates to water-based prolamin (e.g., zein) compositions and to methods of making water-based prolamin compositions. The compositions may be used in paints, printing inks, varnishes, adhesives, glues, binders (e.g., for paper), food coatings, and the like.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Inventors: Leif Sedgewick Freeman, John Warren Lawton, JR., Marvin Lynn Mitchell, Melvin Glenn Mitchell
  • Publication number: 20120302120
    Abstract: A short-cut, water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an average fineness of less than 1 denier per filament; and wherein said water non-dispersible short-cut polymer microfiber has an aspect ratio of about 300 to about 1000. Processes to produce the short-cut, water non-dispersible polymer microfiber are also provided as well as process for producing nonwoven articles.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 29, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Mark Dwight Clark, Melvin Glenn Mitchell, Marvin Lynn Mitchell
  • Publication number: 20120302119
    Abstract: A short-cut, water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an average fineness of less than 1 denier per filament; and wherein said water non-dispersible short-cut polymer microfiber has an aspect ratio of about 300 to about 1000. A process for producing water non-dispersible polymer microfibers and a process for producing nonwoven articles are also provided.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 29, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Mark Dwight Clark, Melvin Glenn Mitchell, Marvin Lynn Mitchell
  • Publication number: 20120251597
    Abstract: Various fibrous articles incorporating a water non-dispersible short-cut polymer microfiber are provided. The water non-dispersible short-cut polymer microfibers can be incorporated into a number of different fibrous articles including personal care products, medical care products, automotive products, household products, personal recreational products, specialty papers, paper products, and building and landscaping materials. In addition, the water non-dispersible short-cut polymer microfibers can be incorporated into nonwoven webs, thermobonded webs, hydroentangled webs, multilayer nonwovens, laminates, composites, wet-laid webs, dry-laid webs, laminates, composites, wet laps, woven articles, fabrics and geotextiles. These various end products can incorporate the water non-dispersible short-cut polymer microfibers in varying amounts based on the desired end use.
    Type: Application
    Filed: January 18, 2012
    Publication date: October 4, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell, Mark Dwight Clark, Chris Delbert Anderson
  • Publication number: 20120219766
    Abstract: A high strength specialty paper comprising at least one nonwoven web layer is provided. The nonwoven web layer comprises a plurality of first fibers, a plurality of cellulosic fibers, and a binder. The first fibers comprise a water non-dispersible synthetic polymer and have a different configuration and/or composition than the cellulosic fibers. The first fibers have a length of less than 25 millimeters and a minimum transverse dimension of less than 5 microns. Also disclosed is a process for producing the first fibers and the multicomponent fibers from which they are derived.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 30, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz, Mark Dwight Clark, Chris Delbert Anderson, Marvin Lynn Mitchell, Paula Hines Mitchell, Amber Layne Wolfe