Patents by Inventor Glenn Skala

Glenn Skala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080182149
    Abstract: A WVT unit for a fuel cell system that employs a spiral-wound design to reduce its size and increase its performance. The WVT unit includes a center tube having a plurality of openings through which the cathode exhaust gas flows. The WVT unit also includes a cylindrical portion wound around the center tube that includes a plurality of enclosures and a plurality of dry spacer layers separating the enclosures. Each enclosure includes a pair of membranes separated by a wet spacer layer. The dry cathode inlet air flows down the dry spacer layers between the enclosures and the cathode exhaust gas flows into the plurality of enclosures through the openings in the center tube along the wet spacer layers to allow the membranes to absorb humidification that is transferred to the cathode inlet air.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Yan Zhang, Glenn Skala, Annette Brenner
  • Publication number: 20070231641
    Abstract: A voltage monitoring system for measuring the voltage of the fuel cells in a fuel cell stack that employs optical devices for providing an optical signal of the measured voltages, where one or more of the fuel cells power the optical devices. A surface mount device is electrically coupled to opposing plates in the stack, or opposing plates over a plurality of cells in the stack. The surface mount device includes a bonded contact and a spring contact to provide the electrical connection. A detector is positioned remote from the stack that receives the optical signals and converts them back to electrical signals indicative of the voltage.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 4, 2007
    Inventors: Glenn Skala, Robert Foley
  • Publication number: 20070196720
    Abstract: A device and method to extract water from a moisture-rich fuel cell flowpath to supply other components of a fuel cell system that require water. A water transport unit is integrated into the fuel cell so that the size, weight and complexity of a fuel cell is minimized. In one embodiment, the device includes numerous flowpaths that include an active region and an inactive region. The water transport unit includes a moisture-donating fluid channel and a moisture-accepting fluid channel, where the latter is fluidly connected with a portion of the fuel cell that is in need of humidification. Upon passage of a moisture-donating fluid through the inactive region of the device flowpath, at least some of the water contained therein passes through the water transport unit to a portion of the fuel cell that is in need of humidification.
    Type: Application
    Filed: February 21, 2006
    Publication date: August 23, 2007
    Inventor: Glenn Skala
  • Publication number: 20070104986
    Abstract: A technique for determining whether a cooling fluid pump used for pumping a cooling fluid through a fuel cell stack has failed. The technique includes measuring the temperature of the cooling fluid at the output from the stack and/or measuring the cathode exhaust gas temperature as close as possible to the cathode outlet of the stack. The measured temperature is compared to a temperature that would be expected under the current operating conditions of the fuel cell system in a controller. If the difference between the measuring temperature and the expected temperature is large enough, then the controller provides a warning signal of pump failure, and also possibly reduces the stack outlet power.
    Type: Application
    Filed: September 16, 2005
    Publication date: May 10, 2007
    Inventors: Thomas Tighe, Glenn Skala
  • Publication number: 20070065693
    Abstract: A technique for determining whether a cooling fluid pump used for pumping a cooling fluid through a fuel cell stack has failed. The technique includes measuring the temperature of the cooling fluid at the output from the stack and/or measuring the cathode exhaust gas temperature as close as possible to the cathode outlet of the stack. The measured temperature is compared to a temperature that would be expected under the current operating conditions of the fuel cell system in a controller. If the difference between the measuring temperature and the expected temperature is large enough, then the controller provides a warning signal of pump failure, and also possibly reduces the stack outlet power.
    Type: Application
    Filed: November 3, 2005
    Publication date: March 22, 2007
    Inventors: Thomas Tighe, Glenn Skala
  • Publication number: 20060078766
    Abstract: A fuel cell system that provides a flow of anode exhaust gas into the cathode side of the fuel cells without allowing the anode exhaust gas flow and the cathode input flow to mix in a large volume. In one embodiment, strategically positioned perforations in the MEAs allow the anode exhaust gas to cross over to the cathode channels near the cathode input. These perforations could be provided as an array of small holes in an MEA sub-gasket or an MEA carrier frame. In an alternate embodiment, openings are provided through the bipolar plates that allow the anode exhaust to flow into the cathode channels. This configuration would require a special anode half-plate at one end of the stack to provide the opening.
    Type: Application
    Filed: October 8, 2004
    Publication date: April 13, 2006
    Inventor: Glenn Skala
  • Publication number: 20050199192
    Abstract: A thermal management system of an electrochemical engine comprises a radiator provided with a wicking mechanism, a coolant pump fluidly connected to the radiator, a water tank, and a water pump. The water tank is located in the void spaces around fuel storage tanks, and may be filled directly or with reclaimed water from a vapor by-product of the electrochemical engine. The water pump is operable to supply water from the water tank to the wicking mechanism during peak power and/or hot day conditions. Moisture in the vapor by-product may be condensed with the excess cooling capacity of the radiator under less severe cooling conditions. Under freezing conditions, exhaust or coolant from the electrochemical engine may be used to unfreeze water in the tank and wicking mechanism supply lines.
    Type: Application
    Filed: March 10, 2004
    Publication date: September 15, 2005
    Inventors: Steven Goebel, Gerald Fly, Glenn Skala, Lee Whitehead
  • Publication number: 20050158601
    Abstract: A method of providing fuel cell start-up without battery derived compressor power is provided. The method includes introducing hydrogen to the anode inlet of a fuel cell stack previously purged with air. The introduced hydrogen in the anode channels and the existing air in the cathode channels generate a small amount of voltage to begin to drive the air compressor. As additional air is introduced into the cathode channels by the slowly starting compressor, the fuel cell stack produces more voltage until the system is producing sufficient net power to operate under normal run control conditions.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Inventor: Glenn Skala
  • Publication number: 20050130003
    Abstract: A fuel cell cooling system is provided with a coolant pump for pumping fluid through coolant flow field passages in a fuel cell stack. A pressure control mechanism is provided for maintaining a pressure level within the fuel cell stack for causing a phase change of the coolant within the stack. Allowing the coolant to change phase to a gas inside the stack reduces the amount of coolant needed to cool the fuel cell stack and thereby reduces the energy needed to pump the coolant through the fuel cell stack.
    Type: Application
    Filed: February 1, 2005
    Publication date: June 16, 2005
    Inventors: James Lee, Glenn Skala
  • Publication number: 20050081445
    Abstract: A preferred method for starting a primary reactor of a fuel cell system includes performing lean combustion within the primary reactor during a first phase of a start sequence and autothermal reforming during a second phase of the start sequence. In another aspect of the present invention, partial oxidation is performed within the primary reactor during the first phase of the start sequence and autothermal reforming is performed during the second phase of the start sequence.
    Type: Application
    Filed: October 21, 2003
    Publication date: April 21, 2005
    Inventors: Glenn Skala, Gerald Voecks
  • Publication number: 20050037254
    Abstract: A device and method are provided to allow the flowpaths in a fuel cell stack to be reconfigured dependent on reactant gas throughput in order to maintain appropriate pressure drop, sufficient velocities, and reactant concentrations of each cell of a fuel cell stack.
    Type: Application
    Filed: September 23, 2004
    Publication date: February 17, 2005
    Inventors: Glenn Skala, Jeffrey Rock