Patents by Inventor Glenn Whitener

Glenn Whitener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150259574
    Abstract: A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, an amine containing polymer in solution in the liquid carrier, and an iron containing accelerator. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 17, 2015
    Inventors: Steven GRUMBINE, Jeffrey Dysard, Lin Fu, William Ward, Glenn Whitener
  • Patent number: 8778211
    Abstract: The present invention provides chemical-mechanical polishing (CMP) compositions suitable for polishing a substrate comprising a germanium-antimony-tellurium (GST) alloy. The CMP compositions of the present invention are aqueous slurries comprising a particulate abrasive, a water-soluble surface active agent, a complexing agent, and a corrosion inhibitor. The ionic character of the surface active material (e.g., cationic, anionic, or nonionic) is selected based on the zeta potential of the particulate abrasive. A CMP method for polishing a GST alloy-containing substrate utilizing the composition is also disclosed.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: July 15, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Matthias Stender, Glenn Whitener, Chul Woo Nam
  • Publication number: 20140103250
    Abstract: The invention provides a chemical-mechanical polishing composition comprising coated ?-alumina particles, an organic carboxylic acid, and water. The invention also provides a chemical-mechanical polishing composition comprising an abrasive having a negative zeta potential in the polishing composition, an organic carboxylic acid, at least one alkyls disulfonate surfactant, and water, wherein the polishing composition does not further comprise a heterocyclic compound. The abrasive is colloidally stable in the polishing composition. The invention further provides methods of polishing a substrate with the aforesaid polishing compositions.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Inventors: Ji CUI, Steven GRUMBINE, Glenn WHITENER, Chih-An LIN
  • Publication number: 20140024216
    Abstract: The present invention provides chemical-mechanical polishing (CMP) compositions suitable for polishing a substrate comprising a germanium-antimony-tellurium (GST) alloy. The CMP compositions of the present invention are aqueous slurries comprising a particulate abrasive, a water-soluble surface active agent, a complexing agent, and a corrosion inhibitor. The ionic character of the surface active material (e.g., cationic, anionic, or nonionic) is selected based on the zeta potential of the particulate abrasive. A CMP method for polishing a GST alloy-containing substrate utilizing the composition is also disclosed.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Inventors: Matthias STENDER, Glenn WHITENER, Chul Woo NAM
  • Patent number: 8623766
    Abstract: The invention provides a chemical-mechanical polishing composition comprising coated ?-alumina particles, an organic carboxylic acid, and water. The invention also provides a chemical-mechanical polishing composition comprising an abrasive having a negative zeta potential in the polishing composition, an organic carboxylic acid, at least one alkyldiphenyloxide disulfonate surfactant, and water, wherein the polishing composition does not further comprise a heterocyclic compound. The abrasive is colloidally stable in the polishing composition. The invention further provides methods of polishing a substrate with the aforesaid polishing compositions.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: January 7, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Ji Cui, Steven Grumbine, Glenn Whitener, Chih-An Lin
  • Publication number: 20130244433
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, one or more nonionic polymers, optionally one or more phosphonic acids, optionally one or more nitrogen-containing zwitterionic compounds, optionally one or more sulfonic acid copolymers, optionally one or more anionic copolymers, optionally one or more polymers comprising quaternary amines, optionally one or more compounds that adjust the pH of the polishing compositions, water, and optionally one or more additives. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: Cabot Microelectronics Corporation
    Inventors: Brian Reiss, Glenn Whitener
  • Publication number: 20130072021
    Abstract: The invention provides a chemical-mechanical polishing composition comprising coated ?-alumina particles, an organic carboxylic acid, and water. The invention also provides a chemical-mechanical polishing composition comprising an abrasive having a negative zeta potential in the polishing composition, an organic carboxylic acid, at least one alkyldiphenyloxide disulfonate surfactant, and water, wherein the polishing composition does not further comprise a heterocyclic compound. The abrasive is colloidally stable in the polishing composition. The invention further provides methods of polishing a substrate with the aforesaid polishing compositions.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Inventors: Ji Cui, Steven Grumbine, Glenn Whitener, Chih-An Lin