Patents by Inventor Gopikrishnan Soundararajan

Gopikrishnan Soundararajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980463
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic—cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: May 14, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20210205075
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 8, 2021
    Inventors: Carol EBERHARDT, Gopikrishnan SOUNDARARAJAN, Kenny DANG, Hussain RANGWALA, Mark TORRIANNI, Eric RICHARDSON, Kshitija GARDE
  • Patent number: 10543060
    Abstract: Apparatus and methods for a fluted endodontic file are provided. The apparatus may include a fluted endodontic file defining a central longitudinal axis. The fluted endodontic file may include a working length extending along the central longitudinal axis. The working length may include a single flute. The working length may define an off-center cross-section having three vertices.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 28, 2020
    Assignee: Ormco Corporation
    Inventors: Carlos A. Aloise, L. Stephen Buchanan, Sorin Vasile Cora, Emanuele Maretto, Gopikrishnan Soundararajan
  • Publication number: 20190357816
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic—cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: RAJIV SHAH, BAHAR REGHABI, JAMES L. HENKE, WAYNE A. MORGAN, GOPIKRISHNAN SOUNDARARAJAN, DAVID Y. CHOY, PETER SCHULTZ, UDO HOSS
  • Patent number: 10420496
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 24, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Patent number: 10413401
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 17, 2019
    Assignee: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventors: Carol Eberhardt, Gopikrishnan Soundararajan, Kenny Dang, Hussain Rangwala
  • Patent number: 10321975
    Abstract: A method for continuously evaluating the effectiveness of debridement of a root canal of a tooth, the tooth having an open access cavity and an apex end, includes delivering a fluid to the open access cavity of the tooth, evacuating the fluid near the apex end of the tooth such that the fluid flushes most of the root canal before being evacuated, and continuously evaluating the evacuated fluid for at least one of a presence of debris, a concentration level of the debris, or a type of the debris. An apparatus for use in debriding a root canal of a tooth includes a microcannula or a macrocannula configured to evacuate a fluid in the root canal, and a sensing mechanism fluidically coupled to the microcannula or the macrocannula, the sensing mechanism configured to continuously sense debris in the evacuated fluid in real time.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: June 18, 2019
    Assignee: Ormco Corporation
    Inventors: Steven Joseph Burns, Emanuele Maretto, Abhigyan Som, Carlos Alberto Munoz, Matteo Bosisio, Gopikrishnan Soundararajan, Tuyen Nguyen, M. Reza Mehrabi
  • Patent number: 10288578
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 14, 2019
    Assignee: MEDTRONIC MINIMED, INC
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 10201398
    Abstract: Devices and methods for dispensing material from a dental handpiece. In one example, the method includes receiving an input that indicates that an amount of the material is to be dispensed from the container of the dental handpiece. The method also includes rotating an electric motor to rotate an imbalanced mass to vibrate a vibration transmission element that vibrates the material in the container. The method also includes dispensing the amount of the material from the container with a piston based on the input.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 12, 2019
    Assignees: Kaltenbach & Voigt GmbH, KaVo Dental Technologies, LLC, Kerr Corporation
    Inventors: Michael Aaron Fisher, Robert Thomas St. Louis, Gopikrishnan Soundararajan, Matteo Riccardo Bosisio, Michael Carl Dunaway
  • Publication number: 20180153644
    Abstract: The present invention relates to apparatuses and methods of endodontic treatment. The endodontic treatment system includes an endodontic device for use in endodontic procedures. The endodontic device is coupled to a fluid delivery system and includes an end effector, a first cannula (70), and a second cannula (72). The first cannula (70) and the second cannula (72) are movable relative to one another to an extended position in which the second cannula (72) extends from the first cannula (70). A method for endodontic treatment of a root canal of a tooth includes moving a first cannula (70) and the second cannula (72) relative to one another from a first position to a second position in which the second cannula (72) extends from the first cannula (70) into the root canal and evacuating the irrigant from the root canal with the second cannula (72).
    Type: Application
    Filed: July 13, 2016
    Publication date: June 7, 2018
    Inventors: Matteo Bosisio, M. Reza Mehrabi, Emanuele Maretto, Gopikrishnan Soundararajan, Carl Gordon Hewett, Matthew Daniel Chandler, Brian Glicker
  • Patent number: 9987110
    Abstract: A curing light device includes a body with a tip portion that has a plurality of elements for providing electrical energy to the distal end of the tip and for removing heat from the distal end of the tip. A light engine includes at least one light emitting element operable for emitting light and is positioned on the distal end of the tip portion. A power supply is positioned in the body and is rechargeable and includes at least one ultracapacitor element. Spring electrical contacts are positioned in the body and electrically coupled with the ultracapacitor element. The spring electrical contacts are spaced along the length of the body and configured for electrically engaging the tip portion along its length for delivering power to the light engine and for provide a spring alignment of the tip portion in the body.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: June 5, 2018
    Assignee: Kerr Corporation
    Inventors: Owen J. Gill, Ruth Barry, Stacy Lee Wyatt, Gopikrishnan Soundararajan
  • Patent number: 9976978
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: May 22, 2018
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20180113091
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Patent number: 9925026
    Abstract: An adapter for coupling a compule with a dental handpiece including a piston. The compule contains a dental material. The adapter includes a coupling portion that defines openings for attaching the adapter to the compule and for attaching the adapter to the dental handpiece. A plunger portion extends through one opening and engages the piston. A breakable tab connects the coupling portion and the plunger portion and breaks during dispensing of the material. The plunger portion is then movable relative to the coupling portion. A tip for use with the dental handpiece includes a housing that defines a chamber. A needle extends from the housing and defines a lumen having an opening from which the dental material is dispensed. A plunger slides within the chamber to push the dental material through the lumen and includes a rib that seals the plunger against the chamber during sliding movement of the plunger.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: March 27, 2018
    Assignee: Kerr Corporation
    Inventors: Emanuele Maretto, Matteo Bosisio, Gopikrishnan Soundararajan, Mehdi Durali, Carlos Munoz
  • Patent number: 9885684
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 6, 2018
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 9835580
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: December 5, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20170340413
    Abstract: A method for continuously evaluating the effectiveness of debridement of a root canal of a tooth, the tooth having an open access cavity and an apex end, includes delivering a fluid to the open access cavity of the tooth, evacuating the fluid near the apex end of the tooth such that the fluid flushes most of the root canal before being evacuated, and continuously evaluating the evacuated fluid for at least one of a presence of debris, a concentration level of the debris, or a type of the debris. An apparatus for use in debriding a root canal of a tooth includes a microcannula or a macrocannula configured to evacuate a fluid in the root canal, and a sensing mechanism fluidically coupled to the microcannula or the macrocannula, the sensing mechanism configured to continuously sense debris in the evacuated fluid in real time.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 30, 2017
    Inventors: Steven Joseph Burns, Emanuele Maretto, Abhigyan Som, Carlos Alberto Munoz, Matteo Bosisio, Gopikrishnan Soundararajan, Tuyen Nguyen, M. Reza Mehrabi
  • Publication number: 20170299541
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: July 3, 2017
    Publication date: October 19, 2017
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20170258566
    Abstract: A curing light device includes a body with a tip portion that has a plurality of elements for providing electrical energy to the distal end of the tip and for removing heat from the distal end of the tip. A light engine includes at least one light emitting element operable for emitting light and is positioned on the distal end of the tip portion. A power supply is positioned in the body and is rechargeable and includes at least one ultracapacitor element. Spring electrical contacts are positioned in the body and electrically coupled with the ultracapacitor element. The spring electrical contacts are spaced along the length of the body and configured for electrically engaging the tip portion along its length for delivering power to the light engine and for provide a spring alignment of the tip portion in the body.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Owen J. Gill, Ruth Barry, Stacy Lee Wyatt, Gopikrishnan Soundararajan
  • Patent number: 9759678
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: September 12, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz