Patents by Inventor Goran MAJKIC

Goran MAJKIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923105
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: March 5, 2024
    Assignee: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 11901097
    Abstract: A round superconductor wire and method for fabricating same are disclosed. Embodiments are directed to a round superconductor wire including at least two superconductor tapes wound on a wire former. Each superconductor tape includes: bottom stabilizer and silver layers; substrate disposed above the bottom silver layer; buffer film stack disposed above the substrate; superconductor film disposed above the buffer film stack; top silver layer disposed above the superconductor film; and top stabilizer layer disposed above the top silver layer. At least one of the bottom stabilizer layer, bottom silver layer, substrate, buffer film stack, superconductor film, top silver layer, or top stabilizer layer is of a different width, thickness, or material composition in one of the superconductor tapes than in another of the superconductor tapes. These and other embodiments achieve a round superconductor wire having improved current density in high magnetic field applications when made in small diameters.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: February 13, 2024
    Assignees: University of Houston System, AMPEERS LLC
    Inventors: Goran Majkic, Anis Ben Yahia, Wenbo Luo, Venkat Selvamanickam, Soumen Kar
  • Publication number: 20230384356
    Abstract: A method and system for quench detection in high temperature superconductors, such as REBCO (rare-earth barium copper oxide), before thermal runaway. A REBCO superconducting tape is excited as a transmission line forming standing waves. A quench may then be detected in response to detecting a disturbance of the standing waves. In this manner, quench in high temperature superconductors, such as REBCO, is rapidly detected before thermal runaway.
    Type: Application
    Filed: April 29, 2023
    Publication date: November 30, 2023
    Applicant: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam, Jarek Wosik
  • Publication number: 20220406985
    Abstract: A superconductor tape and method for manufacturing, measuring, monitoring, and controlling same are disclosed. Embodiments are directed to a superconductor tape which includes a superconductor film overlying a buffer layer which overlies a substrate. In one embodiment, the superconductor film is defined as having a c-axis lattice constant higher than 11.74 Angstroms. In another embodiment, the superconductor film comprises BaMO3, where M=Zr, Sn, Ta, Nb, Hf, or Ce, and which has a (101) peak of BaMO3 elongated along an axis that is between 60° to 90° from an axis of the (001) peaks of the superconductor film. These and other embodiments achieve well-aligned nanocolumnar defects and thus a high lift factor, which can result in superior critical current performance of the tape in, for example, high magnetic fields.
    Type: Application
    Filed: July 15, 2022
    Publication date: December 22, 2022
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20220406986
    Abstract: A superconductor tape and method for manufacturing, measuring, monitoring, and controlling same are disclosed. Embodiments are directed to a superconductor tape which includes a superconductor film overlying a buffer layer which overlies a substrate. In one embodiment, the superconductor film is defined as having a c-axis lattice constant higher than 11.74 Angstroms. In another embodiment, the superconductor film comprises BaMO3, where M=Zr, Sn, Ta, Nb, Hf, or Ce, and which has a (101) peak of BaMO3 elongated along an axis that is between 60° to 90° from an axis of the (001) peaks of the superconductor film. These and other embodiments achieve well-aligned nanocolumnar defects and thus a high lift factor, which can result in superior critical current performance of the tape in, for example, high magnetic fields.
    Type: Application
    Filed: July 15, 2022
    Publication date: December 22, 2022
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20220392669
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 11417444
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: August 16, 2022
    Assignee: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 11410797
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: August 9, 2022
    Assignee: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 11393970
    Abstract: A superconductor tape and method for manufacturing, measuring, monitoring, and controlling same are disclosed. Embodiments are directed to a superconductor tape which includes a superconductor film overlying a buffer layer which overlies a substrate. In one embodiment, the superconductor film is defined as having a c-axis lattice constant higher than 11.74 Angstroms. In another embodiment, the superconductor film comprises BaMO3, where M=Zr, Sn, Ta, Nb, Hf, or Ce, and which has a (101) peak of BaMO3 elongated along an axis that is between 60° to 90° from an axis of the (001) peaks of the superconductor film. These and other embodiments achieve well-aligned nanocolumnar defects and thus a high lift factor, which can result in superior critical current performance of the tape in, for example, high magnetic fields.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 19, 2022
    Assignee: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20210358660
    Abstract: A round superconductor wire and method for fabricating same are disclosed. Embodiments are directed to a round superconductor wire including at least two superconductor tapes wound on a wire former. Each superconductor tape includes: bottom stabilizer and silver layers; substrate disposed above the bottom silver layer; buffer film stack disposed above the substrate; superconductor film disposed above the buffer film stack; top silver layer disposed above the superconductor film; and top stabilizer layer disposed above the top silver layer. At least one of the bottom stabilizer layer, bottom silver layer, substrate, buffer film stack, superconductor film, top silver layer, or top stabilizer layer is of a different width, thickness, or material composition in one of the superconductor tapes than in another of the superconductor tapes. These and other embodiments achieve a round superconductor wire having improved current density in high magnetic field applications when made in small diameters.
    Type: Application
    Filed: October 28, 2019
    Publication date: November 18, 2021
    Inventors: Goran Majkic, Anis Ben Yahia, Wenbo Luo, Venkat Selvamanickam, Soumen Kar
  • Publication number: 20200350100
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20200176150
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: December 26, 2019
    Publication date: June 4, 2020
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 10395799
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: August 27, 2019
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20190198745
    Abstract: A superconductor tape and method for manufacturing, measuring, monitoring, and controlling same are disclosed. Embodiments are directed to a superconductor tape which includes a superconductor film overlying a buffer layer which overlies a substrate. In one embodiment, the superconductor film is defined as having a c-axis lattice constant higher than 11.74 Angstroms. In another embodiment, the superconductor film comprises BaMO3, where M=Zr, Sn, Ta, Nb, Hf, or Ce, and which has a (101) peak of BaMO3 elongated along an axis that is between 60° to 90° from an axis of the (001) peaks of the superconductor film. These and other embodiments achieve well-aligned nanocolumnar defects and thus a high lift factor, which can result in superior critical current performance of the tape in, for example, high magnetic fields.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 27, 2019
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20180130575
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 9892827
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 13, 2018
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20160240285
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20150357090
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 10, 2015
    Applicant: The University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 8926868
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 6, 2015
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
  • Publication number: 20110028328
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Venkat SELVAMANICKAM, Goran MAJKIC, Maxim MARTCHEVSKII