Patents by Inventor Gordon Chiu

Gordon Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11479652
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 25, 2022
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Justin W. Hendrix, Bernard H. Kear, Gordon Chiu, Stephen Tse
  • Patent number: 11225558
    Abstract: A graphene-reinforced polymer matrix composite comprising an essentially uniform distribution in a thermoplastic polymer of about 10% to about 50% of total composite weight of particles selected from graphite microparticles, single-layer graphene nanoparticles, multi-layer graphene nanoparticles, and combinations thereof, where at least 50 wt % of the particles consist of single- and/or multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: January 18, 2022
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Bernard H. Kear, Justin W. Hendrix, Gordon Chiu
  • Publication number: 20210363321
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 25, 2021
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Justin W. Hendrix, Bernard H. Kear, Gordon Chiu, Stephen Tse
  • Patent number: 11174366
    Abstract: A method for forming a graphene-reinforced polymer matrix composite by distributing graphite microparticles into a molten thermoplastic polymer phase comprising one or more molten thermoplastic polymers; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphene successively with each event, until tearing of exfoliated multilayer graphene sheets occurs and produces reactive edges on the multilayer sheets that react with and cross-link the one or more thermoplastic polymers; where the one or more thermoplastic polymers are selected from thermoplastic polymers subject to UV degradation.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 16, 2021
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Bernard H. Kear, Justin Hendrix, Gordon Chiu
  • Patent number: 11098175
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 24, 2021
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas Nosker, Jennifer Lynch, Justin Hendrix, Bernard Kear, Gordon Chiu, Stephen Tse
  • Publication number: 20200068933
    Abstract: A plant press including a container having a cavity for receiving a plant and a plunger disposed within the cavity of the container. The plunger being translatable in a direction transverse to a longitudinal axis of the cavity and adapted to create a shearing force.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 5, 2020
    Applicant: H.T.P. Science Co. L.L.C.
    Inventor: Gordon Chiu
  • Publication number: 20200048425
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 13, 2020
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Justin W. Hendrix, Bernard H. Kear, Gordon Chiu, Stephen Tse
  • Publication number: 20200017645
    Abstract: A graphene-reinforced polymer matrix composite comprising an essentially uniform distribution in a thermoplastic polymer of about 10% to about 50% of total composite weight of particles selected from graphite microparticles, single-layer graphene nanoparticles, multi-layer graphene nanoparticles, and combinations thereof, where at least 50 wt % of the particles consist of single- and/or multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction.
    Type: Application
    Filed: June 25, 2019
    Publication date: January 16, 2020
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Bernard H. Kear, Justin W. Hendrix, Gordon Chiu
  • Publication number: 20190233611
    Abstract: A method for forming a graphene-reinforced polymer matrix composite by distributing graphite microparticles into a molten thermoplastic polymer phase comprising one or more molten thermoplastic polymers; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphene successively with each event, until tearing of exfoliated multilayer graphene sheets occurs and produces reactive edges on the multilayer sheets that react with and cross-link the one or more thermoplastic polymers; where the one or more thermoplastic polymers are selected from thermoplastic polymers subject to UV degradation.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Bernard H. Kear, Justin Hendrix, Gordon Chiu
  • Patent number: 10329391
    Abstract: A graphene-reinforced polymer matrix composite comprising an essentially uniform distribution in a thermoplastic polymer of about 10% to about 50% of total composite weight of particles selected from graphite microp articles, single-layer graphene nanoparticles, multilayer graphene nanoparticles, and combinations thereof, where at least 50 wt % of the particles consist of single- and/or multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: June 25, 2019
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas Nosker, Jennifer K. Lynch, Bernard Kear, Justin Hendrix, Gordon Chiu
  • Patent number: 10253154
    Abstract: A method for forming a graphene-reinforced-polymer matrix composite by distributing graphite microparticles into a molten thermoplastic polymer phase comprising one or more molten thermoplastic polymers; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphene successively with each event, until tearing of exfoliated multilayer graphene sheets occurs arid produces reactive edges on the multilayer sheets that react with and cross-link the one or more thermoplastic polymers; where the one or more thermoplastic polymers are selected from thermoplastic polymers subject to UV degradation.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 9, 2019
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas Nosker, Jennifer Lynch, Bernard Kear, Justin Hendrix, Gordon Chiu
  • Publication number: 20190062521
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Application
    Filed: February 20, 2018
    Publication date: February 28, 2019
    Inventors: Thomas Nosker, Jennifer Lynch, Justin Hendrix, Bernard Kear, Gordon Chiu, Stephen Tse
  • Patent number: 9896565
    Abstract: A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 20, 2018
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas Nosker, Jennifer Lynch, Justin Hendrix, Bernard Kear, Gordon Chiu, Stephen Tse
  • Publication number: 20180009722
    Abstract: The present invention provides for a growing medium having a mix of soil, graphene, and/or graphene oxide. In at least one example, soil is combined with single or few layer graphene. In another example, the soil is combined with single or few layer graphene, including graphene sheets, and graphene oxide. The growing medium has been shown to increase plant growth while providing for growing medium aeration, increased water retention, and increased nutrient loading and release.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 11, 2018
    Inventor: Gordon CHIU
  • Publication number: 20170218141
    Abstract: A graphene-reinforced polymer matrix composite comprising an essentially uniform distribution in a thermoplastic polymer of about 10% to about 50% of total composite weight of particles selected from graphite microp articles, single-layer graphene nanoparticles, multilayer graphene nanoparticles, and combinations thereof, where at least 50 wt % of the particles consist of single- and/or multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction.
    Type: Application
    Filed: July 29, 2015
    Publication date: August 3, 2017
    Inventors: Thomas Nosker, Jennifer K. Lynch, Bernard Kear, Justin Hendrix, Gordon Chiu
  • Publication number: 20160133938
    Abstract: A novel active material comprising graphene-fibrous carbon composite and a method of making it is provided. The composite is highly uniform and conductive. The composite comprises graphene or nanoporous graphene and fibrous carbon, preferably vapor grown carbon fibers (VGCF) and optionally a lithiummetalphosphate (LMP), preferably lithiumferrophosphate or lithiummanganesephosphate.
    Type: Application
    Filed: July 9, 2014
    Publication date: May 12, 2016
    Inventors: Gordon CHIU, Karim ZAGHIB, Abdelbast GUERFI, Amelie FORAND
  • Publication number: 20160083552
    Abstract: A method for forming a graphene-reinforced-polymer matrix composite by distributing graphite microparticles into a molten thermoplastic polymer phase comprising one or more molten thermoplastic polymers; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphene successively with each event, until tearing of exfoliated multilayer graphene sheets occurs arid produces reactive edges on the multilayer sheets that react with and cross-link the one or more thermoplastic polymers; where the one or more thermoplastic polymers are selected from thermoplastic polymers subject to UV degradation.
    Type: Application
    Filed: April 18, 2014
    Publication date: March 24, 2016
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Thomas Nosker, Jennifer Lynch, Bernard Kear, Justin Hendrix, Gordon Chiu
  • Patent number: 9254330
    Abstract: An occlusive dressing made with an elastomeric gel and one or more active agents is described. The elastomeric gel contains a plasticizing oil phase and a block copolymer agent. Methods of preventing, treating, curing or mitigating an infectious disease and methods of making the dressings are also disclosed.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 9, 2016
    Assignee: Biological Responsibility, LLC
    Inventor: Gordon Chiu
  • Patent number: 9221687
    Abstract: Processes for forming expanded hexagonal layered minerals (HLMs) and derivatives thereof using electrochemical charging are disclosed. The process includes employing HLM rocks (20) as electrodes (100) immersed in an electrolytic slurry (50) that includes an organic solvent, metal ions and expanded HLM (24). The electrolysis introduces organic solvent and ions from the metal salt from the slurry into the interlayer spacings that separate the atomic interlayers of the HLM rock, thereby forming 1st-stage charged HLM that exfoliates from the HLM rock. The process includes expanding the electrochemically 1st-stage charged HLM by applying an expanding force.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: December 29, 2015
    Assignee: National University of Singapore
    Inventors: Kian Ping Loh, Junzhong Wang, Gordon Chiu
  • Publication number: 20150368436
    Abstract: A method to make a graphite block of any desired size and with over 99% carbon purity and high density is provided. The graphite block is obtained by mixing graphite flakes of any size with graphene oxide sheets and subjecting the mixture to elevated temperature and pressure. With this method large graphite blocks can be obtained economically and fast. The graphite blocks of this invention have superlubricity characters.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 24, 2015
    Inventors: Gordon Chiu, Teresa Sung, Jay Walter McCloskey, Robert John Hyatt, JR.