Patents by Inventor Gordon Ho

Gordon Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290067
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 14, 2023
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Patent number: 11676340
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: June 13, 2023
    Assignee: The Regents of the University of California
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Publication number: 20230026088
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: June 6, 2022
    Publication date: January 26, 2023
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Patent number: 11380055
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 5, 2022
    Assignee: The Regents of the University of California
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Patent number: 11189092
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 30, 2021
    Assignee: The Regents of the University of California
    Inventors: David Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Publication number: 20210051836
    Abstract: Herein provided is an autonomous unmanned ground vehicle (AUGV) and handheld device for pest control. The AUGV comprises a chassis with a drive mechanism to displace the AUGV among a plurality of plants comprising at least one weed; an image-capture device to obtain images of the plurality of plants; a motorized arm with a free end displaceable with respect to the chassis; a microwave emitter mounted to the free end, displaceable therewith, and operable to emit microwaves; and a control system to operate at AUGV. The control system comprises a processing unit; and a memory having stored thereon instructions to cause the AUGV to perform: independently navigating the chassis among the plurality of plants; identifying the at least one weed in the images; displacing the motorized arm to position the free end in proximity to the at least one weed; and emitting microwaves toward the at least one weed.
    Type: Application
    Filed: January 24, 2019
    Publication date: February 25, 2021
    Inventors: Yahoel VAN ESSEN, Gordon HO
  • Publication number: 20190304183
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: David Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Publication number: 20190206127
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
  • Patent number: 10319144
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 11, 2019
    Assignee: The Regents of the University of California
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher Villongco, Gordon Ho
  • Publication number: 20170178403
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 22, 2017
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher Villongco, Gordon Ho