Patents by Inventor Gordon K. Madson

Gordon K. Madson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936985
    Abstract: A method can include forming a drift region, forming a well region above the drift region, and forming an active trench extending through the well region and into the drift region. The method can include forming a first source region in contact with a first sidewall of the active trench and a second source region in contact with a second sidewall of the active trench. The method also includes forming a charge control trench where the charge control trench is aligned parallel to the active trench and laterally separated from the active trench by a mesa region, and where the portion of the well region is in contact with the charge control trench and excludes any source region. The method also includes forming an oxide along a bottom of the active trench having a thickness greater than a thickness of an oxide along the first sidewall of the active trench.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 20, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 8497549
    Abstract: A shielded gate field effect transistor includes a trench extending into a semiconductor region. A shield electrode is in a lower portion of the trench, and is insulated from the semiconductor region by a shield dielectric. The shield dielectric comprises first and second dielectric layers, the first dielectric layer extending between the second dielectric layer and the semiconductor region. The second dielectric layer comprises a material which during oxidation process inhibits growth of oxide along surfaces of the semiconductor region covered by the second dielectric layer. An inter-electrode dielectric overlies the shield electrode, and a gate dielectric lines upper trench sidewalls. A gate electrode is in an upper portion of the trench over the inter-electrode dielectric.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 30, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Gordon K. Madson
  • Publication number: 20120220091
    Abstract: A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film by a sub-atmospheric chemical vapor deposition process that fills the trench and covers a top surface of the substrate. The method also includes etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: August 30, 2012
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridley, Steven P. Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter H. Wilson, Joseph A. Yedinak, J.Y. Jung, H.C. Jang, Babak S. Sani, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 8143124
    Abstract: A method of manufacturing a semiconductor device having a charge control trench and an active control trench with a thick oxide bottom includes forming a drift region, a well region extending above the drift region, an active trench extending through the well region and into the drift region, a charge control trench extending deeper into the drift region than the active trench, an oxide film that fills the active trench, the charge control trench and covers a top surface of the substrate, an electrode in the active trench, and source regions. The method also includes etching the oxide film off the top surface of the substrate and inside the active trench to leave a substantially flat layer of thick oxide having a target thickness at the bottom of the active trench.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: March 27, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20100187602
    Abstract: Semiconductor devices and methods for making such devices using nitride consumption LOCOS oxidation are described. The semiconductor devices contain a planar field oxide structure that has been grown using a nitride layer as an oxidation mask. Once the field oxide structure has been grown, the nitride mask is not etched away, but rather converted to an oxide layer by an oxidation process using radicals of hydrogen and oxygen. The semiconductor devices also contain a shielded gate trench MOSFET that can be created using an oxide layer with an overlying nitride layer as the channel (sidewall) gate dielectric. An inter-poly-dielectric (IPD) layer can be formed from a thermally grown oxide which uses the nitride layer as a oxidation mask. The thickness of the IPD layer can be adjusted to any thickness needed with minimal effect of the channel gate dielectric layer.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 29, 2010
    Inventors: Debra S. Woolsey, Tony L. Olsen, Gordon K. Madson
  • Patent number: 7553740
    Abstract: A field effect transistor is formed as follows. Openings are formed in a masking layer extending over a surface of a silicon region. A trench is formed in the silicon region through each opening in the masking layer. A layer of silicon is formed along sidewalls and bottom of each trench and along masking layer sidewalls which define each opening. The masking layer is removed to expose surface areas of the silicon region underlying the masking layer and to expose sidewalls of the layer of silicon to thereby form contact openings over the surface of the silicon region. A contact layer is formed to electrically contact the exposed surface areas of the silicon region and the exposed sidewalls of the layer of silicon.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: June 30, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joelle Sharp, Gordon K. Madson
  • Publication number: 20090050959
    Abstract: A shielded gate field effect transistor includes a trench extending into a semiconductor region. A shield electrode is in a lower portion of the trench, and is insulated from the semiconductor region by a shield dielectric. The shield dielectric comprises first and second dielectric layers, the first dielectric layer extending between the second dielectric layer and the semiconductor region. The second dielectric layer comprises a material which during oxidation process inhibits growth of oxide along surfaces of the semiconductor region covered by the second dielectric layer. An inter-electrode dielectric overlies the shield electrode, and a gate dielectric lines upper trench sidewalls. A gate electrode is in an upper portion of the trench over the inter-electrode dielectric.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 26, 2009
    Inventor: Gordon K. Madson
  • Publication number: 20080199995
    Abstract: A method of forming a trench gate field effect transistor includes the following processing steps. Trenches are formed in a semiconductor substrate. The semiconductor substrate is annealed in an ambient including hydrogen gas. A dielectric layer lining at least the sidewalls of the trenches is formed. During the time between annealing and forming the dielectric layer, the semiconductor substrate is maintained in an inert environment to prevent formation of native oxide along sidewalls of the trenches prior to forming the dielectric layer.
    Type: Application
    Filed: February 15, 2007
    Publication date: August 21, 2008
    Inventors: Debra Susan Woolsey, Joelle Sharp, Tony Lane Olsen, Gordon K. Madson
  • Publication number: 20080150020
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region.
    Type: Application
    Filed: January 22, 2008
    Publication date: June 26, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridley, Steven P. Sapp, Qi Wang, Chongman Yun, J. G. Lee, Peter H. Wilson, Joseph A. Yedinak, J. Y. Jung, H. C. Jang, Babak S. Sani, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20080138953
    Abstract: A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film that fills the trench and covers a top surface of the substrate. and etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench. The oxide film can be deposited by sub-atmospheric chemical vapor deposition processes, directional Tetraethoxysilate (TEOS) processes, or high density plasma deposition processes that form a thicker oxide at the bottom of the trench than on the sidewalls of the trench.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20080135931
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridlay, Steven P. Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter H. Wilson, Joseph A. Yedinak, J.Y. Jung, H.C. Jang, Babak S. Sanl, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 6825087
    Abstract: A method of forming a trench in a substrate or in an epitaxial layer, previously grown over the semiconductor substrate, wherein an anneal step, using hydrogen gas results in rounded corners without the need for a rounding etch or any other processing steps to round the corners.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: November 30, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joelle Sharp, Gordon K. Madson
  • Patent number: 6635534
    Abstract: A method of manufacturing a trench structure for a trench MOSFET, including the steps of providing a semiconductor substrate having a major surface, forming a dielectric pillar on the substrate major surface (the dielectric pillar extending substantially perpendicularly from the major surface of the substrate), selectively forming a semiconductor layer around the dielectric pillar, and removing a predetermined length of the dielectric pillar to create a trench in the substrate, the trench defined by sidewalls and a bottom. The method permits the controlled formation of a dielectric plug at the bottom of the trench, the plug having predetermined dimensions.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 21, 2003
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Gordon K. Madson
  • Patent number: 6576954
    Abstract: A method of creating a thermally grown oxide of any thickness at the bottom of a silicon trench. A dielectric (e.g. oxide) pillar of a predetermined thickness is formed on a semiconductor substrate. A selective epitaxial growth (SEG) process is used to form an epitaxial layer around and over the oxide pillars. A trench is patterned and etched through the SEG layer and in alignment with the oxide pillar such that the trench terminates at the top of the oxide pillar.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: June 10, 2003
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Gordon K. Madson, Joelle Sharp
  • Publication number: 20020102786
    Abstract: A method of creating a thermally grown oxide of any thickness at the bottom of a silicon trench. A dielectric (e.g. oxide) pillar of a predetermined thickness is formed on a semiconductor substrate. A selective epitaxial growth (SEG) process is used to form an epitaxial layer around and over the oxide pillars. A trench is patterned and etched through the SEG layer and in alignment with the oxide pillar such that the trench terminates at the top of the oxide pillar.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 1, 2002
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Gordon K. Madson, Joelle Sharp
  • Patent number: 6391699
    Abstract: A method of creating a thermally grown oxide of any thickness at the bottom of a silicon trench. A dielectric (e.g. oxide) pillar of a predetermined thickness is formed on a semiconductor substrate. A selective epitaxial growth (SEG) process is used to form an epitaxial layer around and over the oxide pillars. A trench is patterned and etched through the SEG layer and in alignment with the oxide pillar such that the trench terminates at the top of the oxide pillar.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: May 21, 2002
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Gordon K. Madson, Joelle Sharp
  • Publication number: 20010049167
    Abstract: A method of manufacturing a trench structure for a trench MOSFET, including the steps of providing a semiconductor substrate having a major surface, forming a dielectric pillar on the substrate major surface (the dielectric pillar extending substantially perpendicularly from the major surface of the substrate), selectively forming a semiconductor layer around the dielectric pillar, and removing a predetermined length of the dielectric pillar to create a trench in the substrate, the trench defined by sidewalls and a bottom. The method permits the controlled formation of a dielectric plug at the bottom of the trench, the plug having predetermined dimensions.
    Type: Application
    Filed: February 9, 2001
    Publication date: December 6, 2001
    Inventor: Gordon K. Madson
  • Publication number: 20010034109
    Abstract: A method of increasing trench density for semiconductor devices such as, for example, trench MOSFETs. Trenches are formed in a substrate with mesas interposed between the trenches. The initial width of the mesas are made less than target width so that a reduction in trench pitch can be realized. After a silicon layer is grown inside the trenches, the width of the mesas is increased to a final width that is two times the thickness of the silicon layer. The thickness of the silicon layer is precalculated so that it is of sufficient thickness to ensure compliance with the target mesa width.
    Type: Application
    Filed: May 1, 2001
    Publication date: October 25, 2001
    Inventors: Gordon K. Madson, Joelle Sharp
  • Patent number: 6291310
    Abstract: A method of increasing trench density for semiconductor devices such as, for example, trench MOSFETs. Trenches are formed in a substrate with mesas interposed between the trenches. The initial width of the mesas are made less than target width so that a reduction in trench pitch can be realized. After a silicon layer is grown inside the trenches, the width of the mesas is increased to a final width that is two times the thickness of the silicon layer. The thickness of the silicon layer is precalculated so that it is of sufficient thickness to ensure compliance with the target mesa width.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: September 18, 2001
    Assignee: Fairfield Semiconductor Corporation
    Inventors: Gordon K. Madson, Joelle Sharp