Patents by Inventor Gordon M. Grivna

Gordon M. Grivna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10833154
    Abstract: An electronic device can include a substrate and an insulating structure. In an aspect, an anchor can include a portion of the substrate that extends into the insulating structure or a portion of the insulating structure that extends into the substrate. In another aspect, a process of forming an electronic device can include patterning a substrate to define a trench and a first anchor; and forming an insulating structure within the trench and adjacent to the first anchor. In a further aspect, a process of forming an electronic device can include patterning a substrate to define a trench having a sidewall and a first pillar spaced apart from the sidewall; doping the first pillar to change a conductivity type of the first pillar; and forming an insulating structure that surrounds the first pillar.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 10, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. Grivna, Steven M. Etter, Hiroyuki Suzuki, Miki Ichiyanagi, Toshihiro Hachiyanagi
  • Publication number: 20200350424
    Abstract: In a general aspect, method of producing an insulated-gate bipolar transistor (IGBT) device can include forming a termination structure in an inactive region. The inactive region at least partial surround an active region. The method can also include forming a trench extending along a longitudinal axis in the active region. A first mesa can define a first sidewall of the trench, and a second mesa can define a second sidewall of the trench. The first mesa and the second mesa can be parallel with the trench. The method can further include forming, in at least a portion of the first mesa, an active segment of the IGBT device, and, forming, in at least a portion of the second mesa, an inactive segment of the IGBT device.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia LEE, Ralph N. WALL, Mingjiao LIU, Shamsul Arefin KHAN, Gordon M. GRIVNA
  • Patent number: 10804296
    Abstract: A monolithic semiconductor device has a substrate with a power region and control region. The substrate can be a silicon-on-insulator substrate. An opening is formed in the power region and extends partially through the substrate. A semiconductor material is formed within the opening. A power semiconductor device, such as a vertical power transistor, is formed within the semiconductor material. A control logic circuit is formed in the control region. A first isolation trench is formed in the power region to isolate the power semiconductor device and control logic circuit. A second isolation trench is formed in the control region to isolate a first control logic circuit from a second control logic circuit. An interconnect structure is formed over the power region and control region to provide electrical interconnect between the control logic circuit and power semiconductor device. A termination trench is formed in the power region.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: October 13, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jefferson W. Hall, Gordon M. Grivna
  • Publication number: 20200321291
    Abstract: A semiconductor substrate contains a plurality of openings extending partially into a surface of the semiconductor substrate. A conductive layer is formed with a first portion of the conductive layer over a remaining portion of the surface of the semiconductor substrate between the openings and a second portion of the conductive layer in the openings. The remaining portion of the surface of the semiconductor substrate is removed to lift-off the first portion of the conductive layer while leaving the second portion of the conductive layer in the openings. The semiconductor substrate is singulated to separate the semiconductor die leaving the second portion of the conductive layer over a surface of the semiconductor die. Alternatively, a plurality of openings is formed over each semiconductor die. A conductive layer is formed over a remaining portion of the surface of the semiconductor substrate between the openings and into the openings.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Patent number: 10796961
    Abstract: A method of singulating a wafer includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces. The wafer has first and second opposing major surfaces, a layer of material atop the second major surface, and portions of the layer of material are adapted to remain atop surfaces of the plurality of die after completion of the method of singulating the wafer. The method includes placing the wafer onto a carrier substrate and singulating the wafer through the spaces to form singulation lines, wherein singulating comprises leaving at least a portion of the layer of material under the singulation lines. The method includes separating the layer of material under the singulation lines by applying pressure to the wafer and applying high frequency vibrations to fatigue the layer of material.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 6, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 10784140
    Abstract: An electronic device can include a semiconductor material and a semiconductor layer overlying the semiconductor material, wherein the semiconductor layer has a greater bandgap energy as compared to the semiconductor material. The electronic device can include a component having a high electrical field region and a low electrical field region. Within the high electrical field region, the semiconductor material is not present. In another embodiment, the component may not be present. In another aspect, a process can include providing a substrate and a semiconductor layer overlying the substrate; removing a first portion of the substrate to define a first trench; forming a first insulating layer within the first trench; removing a second portion of the substrate adjacent to first insulating layer to define second trench; and forming a second insulating layer within the second trench.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 22, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Ali Salih, Gordon M. Grivna
  • Publication number: 20200295149
    Abstract: Systems and methods of the disclosed embodiments include an electronic device that has a gate electrode for supplying a gate voltage, a source, a drain, and a channel doped to enable a current to flow from the drain to the source when a voltage is applied to the gate electrode. The electronic device may also include a gate insulator between the channel and the gate electrode. The gate insulator may include a first gate insulator section comprising a first thickness, and a second gate insulator section comprising a second thickness that is less than the first thickness. The gate insulator sections thereby improve the safe operating area by enabling the current to flow through the second gate insulator section at a lower voltage than the first gate insulator section.
    Type: Application
    Filed: June 24, 2019
    Publication date: September 17, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji PADMANABHAN, Prasad VENKATRAMAN, Zia HOSSAIN, Donald ZAREMBA, Gordon M. GRIVNA, Alexander YOUNG
  • Patent number: 10770350
    Abstract: A method for forming an electronic device includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces. A layer of material is disposed atop a major surface of the wafer and the layer of material is placed adjacent to first carrier substrate comprising a first adhesive layer. The wafer is singulated through the spaces to form singulation lines. A second carrier substrate comprising a second adhesive layer is placed onto an opposite major surface of the wafer. The method includes moving a mechanical device adjacent to and in a direction generally parallel to one of the first carrier substrate or the second carrier substrate to separate the layer of material in the singulation lines. In one example, the second adhesive layer has an adhesive strength that is less than that of the first adhesive layer.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 8, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Publication number: 20200258739
    Abstract: A first semiconductor substrate contains a first semiconductor material, such as silicon. A second semiconductor substrate containing a second semiconductor material, such as gallium nitride or aluminum gallium nitride, is formed on the first semiconductor substrate. The first semiconductor substrate and second semiconductor substrate are singulated to provide a semiconductor die including a portion of the second semiconductor material supported by a portion of the first semiconductor material. The semiconductor die is disposed over a die attach area of an interconnect structure. The interconnect structure has a conductive layer and optional active region. An underfill material is deposited between the semiconductor die and die attach area of the interconnect structure. The first semiconductor material is removed from the semiconductor die and the interconnect structure is singulated to separate the semiconductor die. The first semiconductor material can be removed post interconnect structure singulation.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. GRIVNA, Stephen ST. GERMAIN
  • Patent number: 10741447
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a clamping electrode for electrostatically clamping the work piece to the work piece support; providing a mechanical partition between the plasma source and the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 11, 2020
    Assignee: Plasma-Therm LLC
    Inventors: Linnell Martinez, David Pays-Volard, Chris Johnson, David Johnson, Russell Westerman, Gordon M. Grivna
  • Patent number: 10727188
    Abstract: A semiconductor substrate contains a plurality of openings extending partially into a surface of the semiconductor substrate. A conductive layer is formed with a first portion of the conductive layer over a remaining portion of the surface of the semiconductor substrate between the openings and a second portion of the conductive layer in the openings. The remaining portion of the surface of the semiconductor substrate is removed to lift-off the first portion of the conductive layer while leaving the second portion of the conductive layer in the openings. The semiconductor substrate is singulated to separate the semiconductor die leaving the second portion of the conductive layer over a surface of the semiconductor die. Alternatively, a plurality of openings is formed over each semiconductor die. A conductive layer is formed over a remaining portion of the surface of the semiconductor substrate between the openings and into the openings.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 10727326
    Abstract: In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT can also include a first mesa defining a first sidewall of the trench and in parallel with the trench and a second mesa defining a second sidewall of the trench and in parallel with the trench. At least a portion of the first mesa can include an active segment of the IGBT device, and at least a portion of the second mesa can include an inactive segment of the IGBT device.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall, Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna
  • Patent number: 10707060
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: July 7, 2020
    Assignee: Plasma-Therm LLC
    Inventors: Chris Johnson, David Johnson, Linnell Martinez, David Pays-Volard, Rich Gauldin, Russell Westerman, Gordon M. Grivna
  • Patent number: 10672607
    Abstract: A first semiconductor substrate contains a first semiconductor material, such as silicon. A second semiconductor substrate containing a second semiconductor material, such as gallium nitride or aluminum gallium nitride, is formed on the first semiconductor substrate. The first semiconductor substrate and second semiconductor substrate are singulated to provide a semiconductor die including a portion of the second semiconductor material supported by a portion of the first semiconductor material. The semiconductor die is disposed over a die attach area of an interconnect structure. The interconnect structure has a conductive layer and optional active region. An underfill material is deposited between the semiconductor die and die attach area of the interconnect structure. The first semiconductor material is removed from the semiconductor die and the interconnect structure is singulated to separate the semiconductor die. The first semiconductor material can be removed post interconnect structure singulation.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 2, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. Grivna, Stephen St. Germain
  • Patent number: 10643852
    Abstract: A process of forming electronic device can include providing a substrate having a first portion and a second portion; introducing a nitrogen-containing species into the second portion of the substrate; and exposing the substrate to an oxidizing ambient, wherein a thicker oxide is grown from the first portion as compared to the second portion. In an embodiment, the process can include removing the first portion while the second portion of the substrate that includes the nitrogen-containing species remains. In another embodiment, the process can be used to form different thicknesses of an oxide layer at different portions along a sidewall of a trench. The process may be used in other applications where different thicknesses of oxide layers are to be formed during the same oxidation cycle, such as forming a tunnel dielectric layer and a gate dielectric layer for a floating gate memory cell.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: May 5, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Peter A. Burke, James Kimball, Gordon M. Grivna
  • Publication number: 20200118878
    Abstract: A method for forming an electronic device includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces. A layer of material is disposed atop a major surface of the wafer and the layer of material is placed adjacent to first carrier substrate comprising a first adhesive layer. The wafer is singulated through the spaces to form singulation lines. A second carrier substrate comprising a second adhesive layer is placed onto an opposite major surface of the wafer. The method includes moving a mechanical device adjacent to and in a direction generally parallel to one of the first carrier substrate or the second carrier substrate to separate the layer of material in the singulation lines. In one example, the second adhesive layer has an adhesive strength that is less than that of the first adhesive layer.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Publication number: 20200105700
    Abstract: In a general aspect, a fan-out wafer level package (FOWLP) can include a semiconductor die having an active surface, a backside surface, a plurality of side surfaces, each side surface of the plurality of side surfaces extending between the active surface and the backside surface, a plurality of conductive bumps disposed on the active surface, and an insulating layer disposed on a first portion of the active surface between the conductive bumps. The FOWLP can also include a molding compound encapsulating the backside surface, the plurality of side surfaces, and a second portion of the active surface between the conductive bumps and a perimeter edge of the active surface. The FOWLP can also include a signal distribution structure disposed on the conductive bumps, the insulating layer and the molding compound. The signal distribution structure can be configured to provide respective electrical connections to the plurality of conductive bumps.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: George CHANG, Yusheng LIN, Gordon M. GRIVNA, Takashi NOMA
  • Publication number: 20200098857
    Abstract: A transistor device includes an n-doped pillar and a p-doped pillar forming a super-junction structure on a substrate. An isolation structure is disposed in a trench between the n-doped pillar and the p-doped pillar, and a source and a gate are disposed on the n-doped pillar. The isolation structure can include an air gap encapsulated in the trench by an oxide plug. The isolation structure can include an epi liner disposed on surfaces of the n-doped pillar and the p-doped pillar.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. LOECHELT, Gordon M. GRIVNA, Jaegil LEE, MinKyung KO, Youngchul CHOI
  • Patent number: 10593774
    Abstract: An electronic device can include a transistor having a drain region, a source region, a dielectric layer, and a gate electrode. The dielectric layer can have a first portion and a second portion, wherein the first portion is relatively thicker and closer to the drain region; the second portion is relatively thinner and closer to the source region. The gate electrode of the transistor can overlie the first and second portions of the dielectric layer. In another aspect, an electronic device can be formed using two different dielectric layers having different thicknesses. A gate electrode within the electronic device can be formed over portions of the two different dielectric layers. The process can eliminate masking and doping steps that may be otherwise used to keep the drain dopant concentration closer to the concentration as originally formed.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: March 17, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Publication number: 20200066568
    Abstract: An electronic device can include a semiconductor material and a semiconductor layer overlying the semiconductor material, wherein the semiconductor layer has a greater bandgap energy as compared to the semiconductor material. The electronic device can include a component having a high electrical field region and a low electrical field region. Within the high electrical field region, the semiconductor material is not present. In another embodiment, the component may not be present. In another aspect, a process can include providing a substrate and a semiconductor layer overlying the substrate; removing a first portion of the substrate to define a first trench; forming a first insulating layer within the first trench; removing a second portion of the substrate adjacent to first insulating layer to define second trench; and forming a second insulating layer within the second trench.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 27, 2020
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Ali Salih, Gordon M. Grivna