Patents by Inventor Grant Alan Ingram

Grant Alan Ingram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242044
    Abstract: Embodiments of the present disclosure are directed to additive manufacturing apparatuses, cleaning stations incorporated therein, and methods of cleaning using the cleaning stations.
    Type: Application
    Filed: May 22, 2020
    Publication date: August 4, 2022
    Applicant: General Electric Company
    Inventors: Timothy Francis Andrews, Carlos H. Bonilla, Vadim Bromberg, Victor Fulton, Tyler Andrew Griffith, Younkoo Jeong, Jacob Mayer, John Sterle, Stephen M. Deak, Justin Gandee, Tyler Hater, Grant Alan Ingram, Peter Douglas Lueschen
  • Publication number: 20220234109
    Abstract: Embodiments of the present disclosure are directed to additive manufacturing apparatuses, cleaning stations incorporated therein, and methods of cleaning using the cleaning stations.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 28, 2022
    Applicant: General Electric Company
    Inventors: Timothy Francis Andrews, Carlos H. Bonilla, Vadim Bromberg, Victor Fulton, Tyler Andrew Griffith, Younkoo Jeong, John Sterle, Grant Alan Ingram
  • Patent number: 9758252
    Abstract: A method for reducing a turbine clearance gap between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. The method includes determining that an airplane is in a first flight condition, and adjusting the turbine clearance gap to a first clearance gap distance associated with the first flight condition. The method also includes determining a demand for a second flight condition, and adjusting an engine responsiveness to a first engine responsiveness for a first predetermined change in a power parameter of the engine. The method further includes reducing the engine responsiveness from the first engine responsiveness level to a second engine responsiveness level for a second predetermined change in the power parameter of the engine, and closing a clearance control valve associated with the shroud during the second predetermined change in the power parameter of the engine.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 12, 2017
    Assignee: General Electric Company
    Inventors: Sridhar Adibhatla, Steven Edward Nolte, Gerhard Walter Moeller, Christopher Timothy Gallagher, John William Hanify, Grant Alan Ingram
  • Publication number: 20160311546
    Abstract: A method for reducing a turbine clearance gap between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. The method includes determining that an airplane is in a first flight condition, and adjusting the turbine clearance gap to a first clearance gap distance associated with the first flight condition. The method also includes determining a demand for a second flight condition, and adjusting an engine responsiveness to a first engine responsiveness for a first predetermined change in a power parameter of the engine. The method further includes reducing the engine responsiveness from the first engine responsiveness level to a second engine responsiveness level for a second predetermined change in the power parameter of the engine, and closing a clearance control valve associated with the shroud during the second predetermined change in the power parameter of the engine.
    Type: Application
    Filed: March 22, 2016
    Publication date: October 27, 2016
    Inventors: Sridhar Adibhatla, Steven Edward Nolte, Gerhard Walter Moeller, Christopher Timothy Gallagher, John William Hanify, Grant Alan Ingram
  • Publication number: 20140058644
    Abstract: A method for reducing a turbine clearance between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. Said method includes determining, with a flight operation controller, that an airplane is in a first flight condition, wherein the first flight condition is associated with a first turbine clearance and a first engine responsiveness level, determining, with the flight operation controller, that the airplane is in a second flight condition, adjusting an engine responsiveness level from the first engine responsiveness level to a second engine responsiveness level based on determining the airplane is in the second flight condition, and adjusting the turbine clearance from the first turbine clearance to a second turbine clearance based on the engine responsiveness level.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 27, 2014
    Applicant: General Electric Company
    Inventors: Sridhar Adibhatla, Steven Edward Nolte, Gerhard Walter Moeller, Christopher Timothy Gallagher, John William Hanify, Grant Alan Ingram
  • Patent number: 7363758
    Abstract: Disclosed is a method for controlling a lean burn engine coupled to an emission control device that stores oxidants during lean operation, and reacts the stored oxidants during stoichiometric or rich operation, the method comprising estimating amounts of NOx stored in the device along a plurality of axial positions of the device and adjusting an operating parameter based on said estimate.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: April 29, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Christian T. Goralski, Jr., Shane Elwart, Grant Alan Ingram
  • Patent number: 7168239
    Abstract: A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: January 30, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Grant Alan Ingram, Gopichandra Surnilla
  • Patent number: 6912842
    Abstract: A more precise method for determining the oxygen storage capacity of an exhaust gas aftertreatment device is presented. The most accurate capacity estimate is obtained while the engine is idling or during low load operation. The capacity is determined by integrating the output of an oxygen sensor located downstream of the device during a period of time that it takes to store more than a predetermined amount of oxygen in the device. The overall LNT efficiency can then be inferred from its oxygen storage capacity. This method allows for improved emission control and fuel economy.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 5, 2005
    Assignee: Ford Global Technologies, Inc.
    Inventors: David Karl Bidner, Grant Alan Ingram, Gopichandra Surnilla
  • Patent number: 6874312
    Abstract: A method for determining the efficiency of a three-way catalyst is presented. It is shown that more accurate results are achieved if the efficiency estimates are performed when the engine is at idle or during low load operating conditions. The efficiency is inferred from the amount of fuel required to purge the device after it has been fully saturated with oxidants due to lean operation. Due to improved accuracy and reduced reductant waste, this method allows for improved emission control and fuel efficiency.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: April 5, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Grant Alan Ingram, Gopichandra Surnilla
  • Patent number: 6829885
    Abstract: A more accurate method for determining a NOx storage efficiency of an exhaust gas aftertreatment device is presented. The method teaches determining NOx storage efficiency as a function of available LNT NOx storage capacity, which is calculated based on a ratio of an instantaneous value of an amount of NOx stored in the device and total device storage capacity at present operating conditions. Using this method prevents overfilling of the device and inefficient purging, thus improving emission control and fuel economy.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: December 14, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Publication number: 20030221416
    Abstract: A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Applicant: Ford Global Technologies, Inc.
    Inventors: Grant Alan Ingram, Gopichandra Surnilla
  • Patent number: 6622476
    Abstract: A method for estimating the amount of NOx stored in a lean NOx trap. The method includes determining a change in the oxygen concentration between an exhaust air/fuel ratio entering the lean NOx trap and exiting the lean NOx trap to determine the amount of NOx absorbed in the trap and correcting such determination for water gas shift reaction effects in such change in oxygen concentration determination.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: September 23, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Patent number: 6594985
    Abstract: A method for monitoring efficiency of an exhaust gas aftertreatment device is presented. The efficiency is inferred from the amount of fuel required to perform purge of the device after it has been saturated with exhaust gas components such as NOx and oxygen to a predetermined level. The level of saturation is determined from the amount of tailpipe emissions as indicated by the tailpipe exhaust gas sensor. This method improves precision in determining device efficiency and therefore eliminates unnecessary sulfur purges and improves fuel economy. Also, better emission control is achieved since the tailpipe exhaust gas sensor allows closed loop monitoring of NOx emissions and prevents the device from overfilling.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 22, 2003
    Assignee: Ford Global Technologies, Inc.
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Patent number: 6594986
    Abstract: A method for determining the efficiency of a three-way catalyst is presented. It is shown that more accurate results are achieved if the efficiency estimates are performed when the engine is at idle or during low load operating conditions. The efficiency is inferred from the amount of fuel required to purge the device after it has been fully saturated with oxidants due to lean operation. Due to improved accuracy and reduced reductant waste, this method allows for improved emission control and fuel efficiency.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 22, 2003
    Assignee: Ford Global Technologies, Inc.
    Inventors: Grant Alan Ingram, Gopichandra Surnilla
  • Patent number: 6591604
    Abstract: An improved method for monitoring an efficiency of a three-way catalyst coupled in an exhaust passage of an internal combustion engine is presented. First, a reference efficiency estimate (shortly after a SOx purge) is generated based on several data points obtained during normal vehicle driving conditions over varying device temperatures. Next, a current efficiency estimate is obtained from several data points. The two estimates are compared to obtain a measure of reduction in the catalyst efficiency due to device sulfation.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 15, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Patent number: 6588200
    Abstract: An engine air/fuel controller is responsive to an exhaust gas oxygen sensor positioned upstream of a catalytic converter and a proportional exhaust gas oxygen sensor positioned downstream of the catalytic converter. An air/fuel ratio signal provided by the downstream exhaust gas oxygen sensor is adjusted by a correction bias value. A first preferred method of deriving the correction bias value includes calculating the difference between the average of the upstream and downstream air/fuel ratios when the upstream sensor indicates lean operation of the engine. The second preferred method includes deriving the correction bias according a pre-determined and pre-programmed correction bias function, which provides correction bias values as a function of the of the air/fuel ratio measured by the downstream sensor.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: July 8, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Patent number: 6574953
    Abstract: A method for improving a purge conversion efficiency of a Lean NOx Trap coupled downstream of a lean-burn internal combustion engine is presented. This method recognizes that during a purge of the LNT, its temperature increases due to the exothermic reactions in the LNT. Once the LNT temperature exceeds a certain threshold, further increases lead to a reduction in the NOx storage capacity, and therefore an increase in NOx emissions during the purge of the LNT. Therefore, it is proposed to cool the LNT temperature once the threshold is exceeded. This method improves emission control and fuel economy during purge.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: June 10, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Grant Alan Ingram, Gopichandra Surnilla, Jeffrey Scott Hepburn, John M. Roth, Joseph Robert Theis
  • Publication number: 20030097833
    Abstract: A method for improving a purge conversion efficiency of a Lean NOx Trap coupled downstream of a lean-burn internal combustion engine is presented. This method recognizes that during a purge of the LNT, its temperature increases due to the exothermic reactions in the LNT. Once the LNT temperature exceeds a certain threshold, further increases lead to a reduction in the NOx storage capacity, and therefore an increase in NOx emissions during the purge of the LNT. Therefore, it is proposed to cool the LNT temperature once the threshold is exceeded. This method improves emission control and fuel economy during purge.
    Type: Application
    Filed: November 29, 2001
    Publication date: May 29, 2003
    Inventors: Grant Alan Ingram, Gopichandra Surnilla, Jeffrey Scott Hepburn, John M. Roth, Joseph Robert Theis
  • Publication number: 20030093988
    Abstract: A more accurate method for determining a NOx storage efficiency of an exhaust gas aftertreatment device is presented. The method teaches determining NOx storage efficiency as a function of available LNT NOx storage capacity, which is calculated based on a ratio of an instantaneous value of an amount of NOx stored in the device and total device storage capacity at present operating conditions. Using this method prevents overfilling of the device and inefficient purging, thus improving emission control and fuel economy.
    Type: Application
    Filed: November 19, 2001
    Publication date: May 22, 2003
    Inventors: Gopichandra Surnilla, Grant Alan Ingram
  • Patent number: 6553757
    Abstract: A method for improving a purge conversion efficiency of a Lean NOx Trap coupled downstream of a lean-burn internal combustion engine is presented. This method proposes adjusting the purge air-fuel ratio of the device based on its temperature. According to the proposed method, a less rich air-fuel ratio is provided at lower operating temperatures to reduce hydrocarbon emissions since within this temperature range air-fuel ratio does not have a significant affect on NOx emissions. At mid-range operating temperatures, the air-fuel ratio is gradually decreased (made more rich) to reduce NOx emissions. And, finally, at high operating temperatures, HC and NOx emissions are reduced, and therefore, the purge air-fuel is kept at a constant more rich value. This method improves emission control and fuel economy during purge.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: April 29, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Grant Alan Ingram