Patents by Inventor Gregor Veble Mikic

Gregor Veble Mikic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210206486
    Abstract: The aircraft can include: an airframe, a tilt mechanism, a payload housing, and can optionally include an impact attenuator, a set of ground support members (e.g., struts), a set of power sources, and a set of control elements. The airframe can include: a set of rotors and a set of support members.
    Type: Application
    Filed: February 3, 2021
    Publication date: July 8, 2021
    Inventors: Gregor Veble Mikic, Alex Stoll, JoeBen Bevirt
  • Publication number: 20210125515
    Abstract: A method and system for modeling aerodynamic interactions in complex eVTOL configurations for realtime flight simulations and hardware testing which includes decomposing the aircraft into aerodynamic subcomponents, wherein the interactions between these components are handled by flow simulations of the surrounding fluid, which may be Euler flow CFD simulations. A computer generated simulation can be used to analyze the fluid flow and pressures, the forces delivered by an aircraft into the fluid and the forces onto the aircraft from the fluid, to determine the position and attitude of the aircraft, and other aspects. The system may be used as a flight simulator for pilot training in a realtime environment. The system may be used to support component testing using an interface to those components, such as flight electronics and actuators, to test the components in high fidelity simulations of actual flight demands on those components.
    Type: Application
    Filed: October 25, 2020
    Publication date: April 29, 2021
    Inventors: Gregor Veble Mikic, JoeBen Bevirt, Alex Stoll, Jeremy Bain
  • Patent number: 10974827
    Abstract: An aircraft including an airframe and a plurality of propulsion assemblies coupled to the airframe, wherein each propulsion assembly includes an electric motor, a propeller coupled to the electric motor, and a tilt mechanism that connects the propulsion assembly to the airframe and transforms the propulsion assembly between a forward configuration and a hover configuration; wherein the plurality of propulsion assemblies is transformable between a forward arrangement and a hover arrangement, wherein each of the plurality of propulsion assemblies is in the forward configuration in the forward arrangement, wherein each of the plurality of propulsion assemblies is in the hover configuration in the hover arrangement, wherein the spacing between at least two of the propellers of the plurality of propulsion assemblies changes between the forward arrangement and the hover arrangement.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 13, 2021
    Assignee: Joby Aero, Inc.
    Inventors: JoeBen Bevirt, Edward Stilson, Alex Stoll, Gregor Veble Mikic
  • Publication number: 20210078715
    Abstract: A system and method for reducing a psychoacoustic penalty of acoustic noise emitted by an aircraft, including a plurality of propulsion assemblies coupled to the aircraft, wherein each of the plurality of propulsion assemblies includes a motor, and a plurality of blades defined by a propeller, wherein the plurality of blades can define an asymmetric blade spacing; a control subsystem coupled to the aircraft and communicatively coupled to the motor of each of the plurality of propulsion assemblies, wherein the control subsystem is operable to rotate each of the plurality of propulsion assemblies at a different frequency to modulate the acoustic power distribution of the emitted acoustic signature.
    Type: Application
    Filed: October 7, 2020
    Publication date: March 18, 2021
    Inventors: JoeBen Bevirt, Gregor Veble Mikic, Jason Ryan, Alex Stoll, Rob Thodal, Jeremy Bain
  • Patent number: 10919641
    Abstract: A method for determining airspeed of an aircraft that includes determining a rotor model relating a power coefficient of a propeller of the aircraft to an axial inflow velocity through the propeller as a function of a set of rotor operating parameters; determining the set of rotor operating parameters by sampling an electronic control signal associated with an electric motor actuating the propeller; computing the axial inflow velocity through the propeller based on the set of rotor operating parameters using the rotor model; and determining the airspeed based on the axial inflow velocity.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: February 16, 2021
    Assignee: Joby Aero, Inc
    Inventors: Gregor Veble Mikic, Jason Ryan, JoeBen Bevirt
  • Publication number: 20210001979
    Abstract: A vertical take-off and landing aircraft which uses fixed rotors for both VTOL and forward flight operations. The rotors form a synthetic wing and are positioned to achieve a high span efficiency. The rotors are positioned to even out the lift across the span of the synthetic wing. The synthetic wing may also have narrow front and rear airfoils which may provide structural support as well as providing lift during forward flight, or may have a single center wing. The wing rotors are tilted forward and provide some forward propulsion during horizontal flight.
    Type: Application
    Filed: May 21, 2020
    Publication date: January 7, 2021
    Inventors: Gregor Veble Mikic, JoeBen Bevirt, Alex Stoll
  • Patent number: 10843807
    Abstract: A system and method for reducing a psychoacoustic penalty of acoustic noise emitted by an aircraft, including a plurality of propulsion assemblies coupled to the aircraft, wherein each of the plurality of propulsion assemblies includes a motor, and a plurality of blades defined by a propeller, wherein the plurality of blades can define an asymmetric blade spacing; a control subsystem coupled to the aircraft and communicatively coupled to the motor of each of the plurality of propulsion assemblies, wherein the control subsystem is operable to rotate each of the plurality of propulsion assemblies at a different frequency to modulate the acoustic power distribution of the emitted acoustic signature.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: November 24, 2020
    Assignee: Joby Aero, Inc.
    Inventors: JoeBen Bevirt, Gregor Veble Mikic, Jason Ryan, Alex Stoll, Rob Thodal, Jeremy Bain
  • Publication number: 20200361601
    Abstract: The aircraft can include: an airframe, a tilt mechanism, a payload housing, and can optionally include an impact attenuator, a set of ground support members (e.g., struts), a set of power sources, and a set of control elements. The airframe can include: a set of rotors and a set of support members.
    Type: Application
    Filed: April 27, 2020
    Publication date: November 19, 2020
    Inventors: Gregor Veble Mikic, Alex Stoll, JoeBen Bevirt
  • Publication number: 20200331602
    Abstract: The rotary airfoil 100 defines a cross section and a span, wherein the cross section is a function of the point along the span (e.g., spanwise point) and defines an upper surface and a lower surface at each spanwise point. The rotary airfoil 100 also defines, at a cross section, a lift coefficient (CL) that is a function of the angle of attack at which the airfoil is rotated through the air. The system can optionally include: a rotor hub to mount the rotary airfoil, a tilt mechanism to pivot the rotary airfoil between a forward configuration and a hover configuration, and a pitching mechanism to change the angle of attack of the rotary airfoil 100.
    Type: Application
    Filed: December 9, 2019
    Publication date: October 22, 2020
    Inventors: Gregor Veble Mikic, JoeBen Bevirt, Jeremy Bain, Alex Stoll
  • Publication number: 20200324910
    Abstract: A method for determining airspeed of an aircraft that includes determining a rotor model relating a power coefficient of a propeller of the aircraft to an axial inflow velocity through the propeller as a function of a set of rotor operating parameters; determining the set of rotor operating parameters by sampling an electronic control signal associated with an electric motor actuating the propeller; computing the axial inflow velocity through the propeller based on the set of rotor operating parameters using the rotor model; and determining the airspeed based on the axial inflow velocity.
    Type: Application
    Filed: June 5, 2020
    Publication date: October 15, 2020
    Inventors: Gregor Veble Mikic, Jason Ryan, JoeBen Bevirt
  • Publication number: 20200148347
    Abstract: An aircraft including an airframe and a plurality of propulsion assemblies coupled to the airframe, wherein each propulsion assembly includes an electric motor, a propeller coupled to the electric motor, and a tilt mechanism that connects the propulsion assembly to the airframe and transforms the propulsion assembly between a forward configuration and a hover configuration; wherein the plurality of propulsion assemblies is transformable between a forward arrangement and a hover arrangement, wherein each of the plurality of propulsion assemblies is in the forward configuration in the forward arrangement, wherein each of the plurality of propulsion assemblies is in the hover configuration in the hover arrangement, wherein the spacing between at least two of the propellers of the plurality of propulsion assemblies changes between the forward arrangement and the hover arrangement.
    Type: Application
    Filed: May 10, 2019
    Publication date: May 14, 2020
    Inventors: JoeBen Bevirt, Edward Stilson, Alex Stoll, Gregor Veble Mikic
  • Publication number: 20200062416
    Abstract: A method for determining airspeed of an aircraft that includes determining a rotor model relating a power coefficient of a propeller of the aircraft to an axial inflow velocity through the propeller as a function of a set of rotor operating parameters; determining the set of rotor operating parameters by sampling an electronic control signal associated with an electric motor actuating the propeller; computing the axial inflow velocity through the propeller based on the set of rotor operating parameters using the rotor model; and determining the airspeed based on the axial inflow velocity.
    Type: Application
    Filed: June 26, 2019
    Publication date: February 27, 2020
    Inventors: Gregor Veble Mikic, Jason Ryan, JoeBen Bevirt
  • Publication number: 20190329858
    Abstract: An aircraft propulsion system with a drag reduction portion adapted to reduce skin friction on at least a portion of the external surface of an aircraft. The drag reduction portion may include an inlet to ingest airflow. The aircraft may also have an internally cooled electric motor adapted for use in an aerial vehicle. The motor may have its stator towards the center and have an external rotor. The rotor structure may be air cooled and may be a complex structure with an internal lattice adapted for airflow. The stator structure may be liquid cooled and may be a complex structure with an internal lattice adapted for liquid to flow through. A fluid pump may pump a liquid coolant through non-rotating portions of the motor stator and then through heat exchangers cooled in part by air which has flowed through the rotating portions of the motor rotor. The drag reduction portion and the cooled electric motor portion may share the same inlet.
    Type: Application
    Filed: March 16, 2019
    Publication date: October 31, 2019
    Inventors: JoeBen Bevirt, Gregor Veble Mikic, Joey Milia, Rob Thodal, Vishnu Vithula
  • Publication number: 20190329859
    Abstract: An aircraft propulsion system with a drag reduction portion adapted to reduce skin friction on at least a portion of the external surface of an aircraft. The drag reduction portion may include an inlet to ingest airflow. The aircraft may also have an internally cooled electric motor adapted for use in an aerial vehicle. The motor may have its stator towards the center and have an external rotor. The rotor structure may be air cooled and may be a complex structure with an internal lattice adapted for airflow. The stator structure may be liquid cooled and may be a complex structure with an internal lattice adapted for liquid to flow through. A fluid pump may pump a liquid coolant through non-rotating portions of the motor stator and then through heat exchangers cooled in part by air which has flowed through the rotating portions of the motor rotor. The drag reduction portion and the cooled electric motor portion may share the same inlet.
    Type: Application
    Filed: March 16, 2019
    Publication date: October 31, 2019
    Inventors: JoeBen Bevirt, Gregor Veble Mikic, Joey Milia, Rob Thodal, Vishnu Vithula
  • Publication number: 20180290736
    Abstract: A vertical take-off and landing aircraft which uses fixed rotors for both VTOL and forward flight operations. The rotors form a synthetic wing and are positioned to achieve a high span efficiency. The rotors are positioned to even out the lift across the span of the synthetic wing. The synthetic wing may also have narrow front and rear airfoils which may provide structural support as well as providing lift during forward flight. The wing rotors are tilted forward and provide some forward propulsion during horizontal flight.
    Type: Application
    Filed: November 2, 2017
    Publication date: October 11, 2018
    Inventors: Gregor Veble Mikic, JoeBen Bevirt, Alex Stoll