Patents by Inventor Gregorio Chazenbalk

Gregorio Chazenbalk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076623
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 7, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio CHAZENBALK
  • Patent number: 11913027
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 27, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio Chazenbalk
  • Publication number: 20210403872
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Application
    Filed: July 8, 2021
    Publication date: December 30, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio CHAZENBALK
  • Patent number: 11066647
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: July 20, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio Chazenbalk
  • Publication number: 20190136193
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio CHAZENBALK
  • Patent number: 10131880
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: November 20, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio Chazenbalk
  • Publication number: 20160108364
    Abstract: Methods for the efficient isolation and use of pluripotent adipose-derived stem cells (PASCs) are provided. In certain embodiments the methods involve providing an adipose tissue sample from which the stromal vascular fraction is co-cultured with the adipocyte fraction. PASCs can be isolated with a high degree of purification without requiring an additional cell enrichment process (e.g. cell sorting). PASCs and their conditioned media can be used for tissue regeneration within hours of harvesting the adipose tissue, and without requiring cell expansion. PASCs can grow as floating individual cells, as clusters of cells, or attached to surface(s) of the culture vessel. PASCs do not produce teratomas in vivo, nor do they induce immunorejection upon transplantation, and they achieve a high efficiency in grafting. The cells and compositions can be used for cell therapy and to screen new drugs.
    Type: Application
    Filed: May 22, 2014
    Publication date: April 21, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Gregorio CHAZENBALK
  • Publication number: 20090317367
    Abstract: The present invention describes preadipocytes and methods of differentiating macrophages into preadipocytes by co-culturing adipocytes and resident adipose tissue macrophages. Also described are methods of increasing the proliferative rate of adipose adult stem/progenitor cells.
    Type: Application
    Filed: February 21, 2008
    Publication date: December 24, 2009
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Gregorio Chazenbalk, Cristina Bertolotto, Ricardo Azziz, Charles F. Simmons, Jr., Saleh Heneidi