Patents by Inventor Gregory Alan Fish

Gregory Alan Fish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190171084
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Patent number: 10281662
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: May 7, 2019
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 10263390
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 16, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Patent number: 10256607
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 9, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Patent number: 10241266
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: March 26, 2019
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 10241379
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: March 26, 2019
    Assignee: Aurrion, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Publication number: 20190072715
    Abstract: Methods and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g., via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: John Parker, Gregory Alan Fish, Martin A. Spannagel, Antonio Labaro
  • Patent number: 10224695
    Abstract: In the prior art, tunable lasers utilizing silicon-based tunable ring filters and III-V semiconductor-based gain regions required the heterogeneous integration of independently formed silicon and III-V semiconductor based optical elements, resulting in large optical devices requiring a complex manufacturing process (e.g., airtight packaging to couple the devices formed on different substrates, precise alignment for the elements, etc.). Embodiments of the invention eliminate the need for bulk optical elements and hermetic packaging, via the use of hybridized III-V/silicon gain regions and silicon optical components, such as silicon wavelength filters and stabilized wavelength references, thereby reducing the size and manufacturing complexity of tunable lasing devices.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: March 5, 2019
    Assignee: Aurrion, Inc.
    Inventors: Alexander W. Fang, Gregory Alan Fish, John Hutchinson
  • Publication number: 20190064457
    Abstract: An optical coupling device can couple incident light from a fiber into waveguides, but can reduce the coupling of return light from the waveguides into the fiber. A Faraday rotator layer can rotate by forty-five degrees, with a first handedness, respective planes of polarization of incident beams, and can rotate by forty-five degrees, with a second handedness opposite the first handedness, respective planes of polarization of return beams. A redirection layer can include at least one grating coupler that can redirect an incident beam of one polarization so that the redirected path extends within the redirection layer toward a first waveguide, and can redirect an incident beam of an opposite polarization so that the redirected path extends within the redirection layer toward a second waveguide. An optional birefringent layer can spatially separate incident beam having different polarizations, so that two single-polarization grating couplers can be used.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: Jonathan Edgar Roth, Jared Bauters, Gregory Alan Fish
  • Patent number: 10211595
    Abstract: Described herein are lasers comprising an output port to output an optical signal, a plurality of waveguide segments forming an optical cavity length, and a resonant optical cavity comprising the optical cavity length, a gain medium included in the resonant optical cavity to amplify the optical signal, and a heating element disposed near at least two of the plurality of waveguide segments, the heating element controllable to adjust the phase of the optical signal by heating the waveguide segments. Described herein are optical devices comprising a first plurality of ports to output a plurality of optical signals, a second plurality of ports to receive the plurality of optical signals, and a plurality of coupling waveguides. The plurality of waveguide may comprise a pair of adjacent waveguides separated by a first distance, each of the pair of adjacent waveguides comprising a different width.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 19, 2019
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, Brian Koch, Gregory Alan Fish, Hyundai Park, Jared Bauters
  • Publication number: 20190052053
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 14, 2019
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20190049298
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 10168475
    Abstract: Methods and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g., via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: January 1, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Gregory Alan Fish, Martin A. Spannagel, Antonio Labaro
  • Patent number: 10162133
    Abstract: Embodiments of the invention describe optical devices including a III-V slab having a taper including a first region and a second region smaller than the first. Said first region receives light and confines an optical mode of the received light; thus, as opposed to the prior art solutions, said III-V regions of optical devices perform the optical function of mode confinement. Embodiments of the invention further describe optical devices including a silicon slab to receive light from said III-V slab, and having a taper including a first silicon region and a second silicon region smaller than the first. Said first region receives light and confines an optical mode of the received light. Thus, embodiments of the invention describe optical devices created with a low loss transition from hybrid regions to silicon regions with fewer restrictions on the design of the silicon waveguides and the III-V waveguides.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 25, 2018
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jae Shin
  • Patent number: 10151939
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: December 11, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Patent number: 10139278
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 27, 2018
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 10142712
    Abstract: Embodiments describe transceiver architectures to enable ‘loopback’ operation, thereby allowing or on-chip or intra module characterization of the transceiver. This includes but is not limited to tests such as bit error rate (BER) characterization, received power characterization and calibration of filters (MUX, DMUX etc.) present in the transceiver. Embodiments may also describe architectures for superimposing low-speed data on to the signal coming out of a transmitter, which in turn enables low frequency communication between network elements in the external link.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 27, 2018
    Assignee: Aurrion, Inc.
    Inventors: John M. Garcia, Anand Ramaswamy, Gregory Alan Fish
  • Patent number: 10128634
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 13, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180314016
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 1, 2018
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 10090641
    Abstract: Described herein are methods, systems, and apparatuses to utilize a semiconductor optical amplifier (SOA) comprising a silicon layer including a silicon waveguide, a non-silicon layer disposed on the silicon layer and including a non-silicon waveguide, first and second mode transition region comprising tapers in the silicon waveguide and/or the non-silicon waveguide for exchanging light between the waveguide, and a plurality of regions disposed between the first and second mode transition regions comprising different cross-sectional areas of the silicon waveguide and the non-silicon waveguide such that confinement factors for the non-silicon waveguide in each of the plurality of regions differ.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: October 2, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: Erik Norberg, Brian R. Koch, Gregory Alan Fish