Patents by Inventor Gregory Burgreen

Gregory Burgreen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918727
    Abstract: An extracorporeal system for lung assist includes a housing which includes a blood flow inlet in fluid connection with a pressurizing stator compartment, a fiber bundle compartment in fluid connection with the pressurizing stator compartment via a flow channel within the housing, and a blood flow outlet in fluid connection with the fiber bundle compartment. An impeller is rotatably positioned within the pressurizing compartment. The system further includes a fiber bundle with a plurality of hollow gas permeable fibers extending generally perpendicular to the direction of bulk flow of blood through the fiber bundle compartment from the flow channel to the blood flow outlet.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: March 5, 2024
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Carnegie Mellon University, Mississippi State University
    Inventors: Shalv Madhani, Brian Joseph Frankowski, William J. Federspiel, Gregory Burgreen, James F. Antaki
  • Publication number: 20220080095
    Abstract: A system for lung assist includes a plurality of fiber bundle sections. Each of the fiber bundle sections includes a fiber bundle housing defining a fiber bundle compartment therein and a fiber bundle positioned within the fiber bundle compartment. The fiber bundle includes a plurality of hollow gas permeable fibers configured to permit diffusion of gas between blood and an interior of the plurality of hollow gas permeable fibers. The plurality of hollow gas permeable fibers is positioned such that blood flows around the plurality of hollow gas permeable fibers when flowing through the fiber bundle compartment. Each fiber bundle is different in at least one property from each other fiber bundle.
    Type: Application
    Filed: January 15, 2019
    Publication date: March 17, 2022
    Inventors: William J. Federspiel, Shalv Madhani, Ryan A. Orizondo, Peter Drew Wearden, Brian Joseph Frankowski, Alexandra May, Gregory Burgreen
  • Publication number: 20210283324
    Abstract: An extracorporeal system for lung assist includes a housing which includes a blood flow inlet in fluid connection with a pressurizing stator compartment, a fiber bundle compartment in fluid connection with the pressurizing stator compartment via a flow channel within the housing, and a blood flow outlet in fluid connection with the fiber bundle compartment. An impeller is rotatably positioned within the pressurizing compartment for pressurizing blood entering the pressurizing stator compartment from the blood flow inlet. The system further includes a fiber bundle positioned within the fiber bundle compartment. The fiber bundle includes a plurality of hollow gas permeable fibers. The plurality of hollow gas permeable fibers is adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers. The plurality of hollow gas permeable fibers is positioned such that blood flows around the plurality of hollow gas permeable fibers when flowing through the fiber bundle compartment.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 16, 2021
    Inventors: Shalv Madhani, Brian Joseph Frankowski, William J. Federspiel, Gregory Burgreen, James F. Antaki
  • Patent number: 11045597
    Abstract: An extracorporeal system for lung assist includes a housing which includes a blood flow inlet in fluid connection with a pressurizing stator compartment, a fiber bundle compartment in fluid connection with the pressurizing stator compartment via a flow channel within the housing, and a blood flow outlet in fluid connection with the fiber bundle compartment. An impeller is rotatably positioned within the pressurizing compartment. The system further includes a fiber bundle within the fiber bundle compartment. A plurality of hollow gas permeable fibers of the fiber bundle extend generally perpendicular to the direction of bulk flow of blood through the fiber bundle compartment from the flow channel to the blood flow outlet.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 29, 2021
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Carnegie Mellon University, Mississippi State University
    Inventors: Shalv Madhani, Brian Joseph Frankowski, William J. Federspiel, Gregory Burgreen, James F. Antaki
  • Publication number: 20210077706
    Abstract: A system for lung assist includes a plurality of fiber bundle sections which includes a fiber bundle housing defining a fiber bundle compartment with a fiber bundle positioned within. The fiber bundle includes a plurality of hollow gas permeable fibers. The fiber bundle housing further includes a gas inlet in fluid connection with the fiber bundle housing and in fluid connection with inlets of the plurality of hollow gas permeable fibers, a gas outlet in fluid connection with the housing and in fluid connection with outlets of the plurality of hollow gas permeable fibers, and a blood outlet in fluid connection with a first end of the fiber bundle. The system further includes a base section including a housing including a pressurizing compartment, a pressurizing mechanism within the pressurizing compartment, a blood inlet in fluid connection with the pressurizing compartment and a conduit.
    Type: Application
    Filed: January 15, 2019
    Publication date: March 18, 2021
    Applicants: University of Pittsburgh - Of theCommonwealth System of Higher Education, Mississippi State University
    Inventors: William J. Federspiel, Shalv Madhani, Ryan A. Orizondo, Peter Drew Wearden, Brian Joseph Frankowski, Alexandra May, Gregory Burgreen
  • Publication number: 20180353673
    Abstract: An extracorporeal system for lung assist includes a housing which includes a blood flow inlet in fluid connection with a pressurizing stator compartment, a fiber bundle compartment in fluid connection with the pressurizing stator compartment via a flow channel within the housing, and a blood flow outlet in fluid connection with the fiber bundle compartment. An impeller is rotatably positioned within the pressurizing compartment for pressurizing blood entering the pressurizing stator compartment from the blood flow inlet. The system further includes a fiber bundle positioned within the fiber bundle compartment. The fiber bundle includes a plurality of hollow gas permeable fibers. The plurality of hollow gas permeable fibers is adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers. The plurality of hollow gas permeable fibers is positioned such that blood flows around the plurality of hollow gas permeable fibers when flowing through the fiber bundle compartment.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 13, 2018
    Inventors: Shalv Madhani, Brian Joseph Frankowski, William J. Federspiel, Gregory Burgreen, James F. Antaki
  • Publication number: 20180185567
    Abstract: An extracorporeal system for lung assist includes a housing which includes a blood flow inlet in fluid connection with a pressurizing stator compartment, a fiber bundle compartment in fluid connection with the pressurizing stator compartment via a flow channel within the housing, and a blood flow outlet in fluid connection with the fiber bundle compartment. An impeller is rotatably positioned within the pressurizing compartment for pressurizing blood entering the pressurizing stator compartment from the blood flow inlet. The system further includes a fiber bundle positioned within the fiber bundle compartment. The fiber bundle includes a plurality of hollow gas permeable fibers. The plurality of hollow gas permeable fibers is adapted to permit diffusion of gas between blood and an interior of the hollow gas permeable fibers. The plurality of hollow gas permeable fibers is positioned such that blood flows around the plurality of hollow gas permeable fibers when flowing through the fiber bundle compartment.
    Type: Application
    Filed: June 23, 2016
    Publication date: July 5, 2018
    Inventors: Shalv Madhani, Brian Joseph Frankowski, William J. Federspiel, Gregory Burgreen, James F. Antaki
  • Patent number: 6447265
    Abstract: A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: September 10, 2002
    Assignees: The University of Pittsburgh, The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: James F. Antaki, Bradley Paden, Gregory Burgreen, Nelson Groom
  • Patent number: 6447266
    Abstract: A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: September 10, 2002
    Assignees: University of Pittsburgh, The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: James F. Antaki, Bradley Paden, Gregory Burgreen, Nelson J. Groom
  • Publication number: 20010031210
    Abstract: A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path.
    Type: Application
    Filed: April 24, 2001
    Publication date: October 18, 2001
    Inventors: James F. Antaki, Bradley Paden, Gregory Burgreen, Nelson J. Groom
  • Patent number: 6244835
    Abstract: A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: June 12, 2001
    Inventors: James F. Antaki, Bradley Paden, Gregory Burgreen, Nelson J. Groom
  • Patent number: 6015272
    Abstract: A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: January 18, 2000
    Assignees: University of Pittsburgh, The United States of America as represented by Administrator of the National Aeronautics and Space Administration
    Inventors: James F. Antaki, Bradley Paden, Gregory Burgreen, Nelson Groom