Patents by Inventor Gregory H. Bird

Gregory H. Bird has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140999
    Abstract: The present application describes stapled peptide degron chimeras, which act as protein degradation inducing moieties, either by combining a stapled peptide that binds a disease-related protein with a small molecule degron, such as a cereblon- or VHL-binding small molecule as the degron, or a polypeptide sequence degron, such as a Cop1-binding Trib peptide as the degron; or by combining a stapled peptide degron with a peptide, such as a stapled peptide, or a small molecule that binds a disease-related protein. The present application also relates to methods for the targeted degradation of endogenous proteins through the use of stapled peptide degron chimeras which can be utilized in the treatment of proliferative disorders or other conditions whereby elimination of a disease-causing or disease-related protein would have a therapeutic benefit. The present application also provides methods for making compounds of the application and intermediates thereof.
    Type: Application
    Filed: February 23, 2023
    Publication date: May 2, 2024
    Inventors: Loren D. Walensky, Gregory H. Bird, Ann Morgan Cathcart, Rida Mourtada, Henry D. Herce, James E. Bradner
  • Publication number: 20240132544
    Abstract: This disclosure features structurally-stabilized and/or cysteine-reactive peptide inhibitors for selective targeting of BFL-1, or dual targeting of BFL-1 and MCL-1. Also disclosed are methods of using such structurally-stabilized and cysteine-reactive peptides in the treatment of BFL-1- and/or MCL-1-expressing or -dependent cancers or diseases of cellular excess (e.g., autoimmune or inflammatory conditions). Also provided are combination therapies comprising such structurally-stabilized and/or cysteine-reactive peptides and inhibitors of the DNA damage response pathway, such as an ATM kinase inhibitor, ATR kinase inhibitor, CHK1/2 inhibitor, or PARP inhibitor; or an inhibitor of MCL-1, or a selective inhibitor of BCL-2, or an inhibitor of BCL-2/BCL-XL, for the treatment of BFL-1-expressing or -dependent cancers (e.g., AML), BFL-1 and MCL-1-expressing or -dependent cancers, or diseases of cellular excess (e.g., autoimmune or inflammatory conditions).
    Type: Application
    Filed: October 24, 2023
    Publication date: April 25, 2024
    Inventors: Loren D. Walensky, Gregory H. Bird, Rachel Guerra, Edward Harvey
  • Publication number: 20240124529
    Abstract: Disclosed herein are cross-linked peptides useful for interfering with and inhibiting coronavirus infection (e.g., infection by SARS-CoV-2). Also disclosed are methods of treating and/or preventing a coronavirus infection (e.g., COVID-19).
    Type: Application
    Filed: March 4, 2021
    Publication date: April 18, 2024
    Inventors: Loren D. Walensky, Gregory H. Bird
  • Publication number: 20240002450
    Abstract: This disclosure features structurally-stabilized Ebola virus antiviral peptides. Also disclosed are methods of using such structurally-stabilized peptides in the treatment or prevention of an Ebola virus infection or Ebola virus disease.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 4, 2024
    Inventors: Federico Bernal, Amanda L. Whiting, Loren D. Walensky, Gregory H. Bird
  • Patent number: 11834520
    Abstract: This disclosure features structurally-stabilized and/or cysteine-reactive peptide inhibitors for selective targeting of BFL-1, or dual targeting of BFL-1 and MCL-1. Also disclosed are methods of using such structurally-stabilized and cysteine-reactive peptides in the treatment of BFL-1- and/or MCL-1-expressing or -dependent cancers or diseases of cellular excess (e.g., autoimmune or inflammatory conditions). Also provided are combination therapies comprising such structurally-stabilized and/or cysteine-reactive peptides and inhibitors of the DNA damage response pathway, such as an ATM kinase inhibitor, ATR kinase inhibitor, CHK1/2 inhibitor, or PARP inhibitor; or an inhibitor of MCL-1, or a selective inhibitor of BCL-2, or an inhibitor of BCL-2/BCL-XL, for the treatment of BFL-1-expressing or -dependent cancers (e.g., AML), BFL-1 and MCL-1-expressing or -dependent cancers, or diseases of cellular excess (e.g., autoimmune or inflammatory conditions).
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 5, 2023
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Loren D. Walensky, Gregory H. Bird, Rachel Guerra, Edward Harvey
  • Publication number: 20230183309
    Abstract: This disclosure features structurally-stabilized peptides that target glucagon-like peptide 1 receptor (GLP-1R), compositions comprising same, and methods for using such peptides in the treatment of diabetes, hyperglycemia, cardiovascular disease, obesity, Alzheimer’s disease, Huntington’s disease, and other conditions that can benefit from increased GLP-1 agonist activity and in increasing cAMP levels
    Type: Application
    Filed: December 18, 2020
    Publication date: June 15, 2023
    Inventors: Loren D. Walensky, Gregory H. Bird
  • Publication number: 20230132372
    Abstract: In some embodiments, a mass spectrometry tag may comprise a linker region, a mass balance region, and a reporter region. The mass spectrometry tag may be configured to fragment in a mass spectrometer via an energy dependent process to produce multiple reporter molecules. For example, the reporter region of the tag may be configured to produce at least two reporter molecules via fragmentation. In some embodiments, one or more regions of the tag may comprise at least one heavy isotope. In some such embodiments, the ability to fragment into multiple reporter molecules as well as the placement and/or number of heavy isotope(s) allows the mass spectrometry tag to be distinguished from other similar mass spectrometry tags. In some such embodiments, the ability to distinguish between tags having the same or substantially similar total mass to charge ratio and reporter region mass may allow the system to have a greater multiplexing capacity than conventional systems.
    Type: Application
    Filed: July 28, 2021
    Publication date: April 27, 2023
    Applicants: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Craig Braun, Wilhelm Haas, Steven P. Gygi, Gregory H. Bird, Loren D. Walensky, Martin Helmut Wuhr, Brian K. Erickson
  • Publication number: 20230077821
    Abstract: Compositions and methods are provided for the treatment or prevention of chemotherapy-induced peripheral neuropathy and hearing loss in a subject in need thereof. The methods involve administering to the subject a bclw protein, a BH4 domain-containing fragment thereof, or a bclw mimetic. Also provided are exemplary bclw mimetics.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 16, 2023
    Inventors: Rosalind Segal, Loren D. Walensky, Lisa V. Goodrich, Sarah Elizabeth Raissi, Maria F. Murphy, Gregory H. Bird
  • Patent number: 11466064
    Abstract: Compositions and methods are provided for the treatment or prevention of chemotherapy-induced peripheral neuropathy and hearing loss in a subject in need thereof. The methods involve administering to the subject a bclw protein, a BH4 domain-containing fragment thereof, or a bclw mimetic. Also provided are exemplary bclw mimetics.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 11, 2022
    Assignees: Dana-Farber Cancer Institute, Inc., President and Fellows of Harvard College
    Inventors: Rosalind Segal, Loren D. Walensky, Lisa Vaughn Goodrich, Sarah Elizabeth Raissi, Maria F. Murphy, Gregory H. Bird
  • Publication number: 20220213146
    Abstract: Provided herein is a platform technology for designing stabilized peptides that covalently bind their target protein and thereby inhibit the activity of the target protein. Also provided are exemplary stabilized peptides that can be used for covalent modification of their target proteins.
    Type: Application
    Filed: July 30, 2021
    Publication date: July 7, 2022
    Inventors: Loren D. Walensky, Gregory H. Bird
  • Publication number: 20220204572
    Abstract: The invention provides structurally-constrained peptides by hydrocarbon stapling of a BCL9 HD2 helix for use as a therapeutic agent. The invention further provides methods and kits for use of the structurally-constrained peptide of the instant invention. The invention is based, at least in part, on the results provided herein demonstrating that hydrocarbon stapled helical peptides display excellent proteolytic, acid, and thermal stability, restore the native helical structure of the peptide, possess superior pharmacokinetic properties compared to the corresponding unmodified peptides, and are highly effective in binding to ?-catenin in vitro, in cellulo, and in vivo, disrupting the BCL9/?-catenin interaction, and thereby interfering with deregulated Wnt/?-catenin signaling for therapeutic benefit in a variety of human diseases including human cancer.
    Type: Application
    Filed: November 19, 2021
    Publication date: June 30, 2022
    Inventors: Loren D. Walensky, Ruben Carrasco, Gregory H. Bird
  • Publication number: 20220169688
    Abstract: This disclosure features structurally-stabilized and/or warhead-bearing structurally stabilized peptide inhibitors for targeting ubiquitin activating enzymes (E1). Also disclosed are methods of using such structurally-stabilized and warhead-bearing structurally stabilized peptides in the treatment of E1-expressing or -dependent cancers or diseases. Also provided are combination therapies N comprising such structurally-stabilized and/or warhead-bearing structurally stabilized peptide for the treatment of E1-expressing or -dependent diseases.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 2, 2022
    Inventors: Loren D. Walensky, Ann Morgan Cathcart, Gregory H. Bird
  • Publication number: 20220018847
    Abstract: In some embodiments, a mass spectrometry tag may comprise a linker region, a mass balance region, and a reporter region. The mass spectrometry tag may be configured to fragment in a mass spectrometer via an energy dependent process to produce multiple reporter molecules. For example, the reporter region of the tag may be configured to produce at least two reporter molecules via fragmentation. In some embodiments, one or more regions of the tag may comprise at least one heavy isotope. In some such embodiments, the ability to fragment into multiple reporter molecules as well as the placement and/or number of heavy isotope(s) allows the mass spectrometry tag to be distinguished from other similar mass spectrometry tags. In some such embodiments, the ability to distinguish between tags having the same or substantially similar total mass to charge ratio and reporter region mass may allow the system to have a greater multiplexing capacity than conventional systems.
    Type: Application
    Filed: July 28, 2021
    Publication date: January 20, 2022
    Applicants: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Craig Braun, Wilhelm Haas, Steven P. Gygi, Gregory H. Bird, Loren D. Walensky, Martin Helmut Wuhr, Brian K. Erickson
  • Patent number: 11220532
    Abstract: The invention provides structurally-constrained peptides by hydrocarbon stapling of a BCL9 HD2 helix for use as a therapeutic agent. The invention further provides methods and kits for use of the structurally-constrained peptide of the instant invention. The invention is based, at least in part, on the results provided herein demonstrating that hydrocarbon stapled helical peptides display excellent proteolytic, acid, and thermal stability, restore the native helical structure of the peptide, possess superior pharmacokinetic properties compared to the corresponding unmodified peptides, and are highly effective in binding to ?-catenin in vitro, in cellulo, and in vivo, disrupting the BCL9/?-catenin interaction, and thereby interfering with deregulated Wnt/?-catenin signaling for therapeutic benefit in a variety of human diseases including human cancer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 11, 2022
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Loren D. Walensky, Ruben Carrasco, Gregory H. Bird
  • Patent number: 11169155
    Abstract: In some embodiments, a mass spectrometry tag may comprise a linker region, a mass balance region, and a reporter region. The mass spectrometry tag may be configured to fragment in a mass spectrometer via an energy dependent process to produce multiple reporter molecules. For example, the reporter region of the tag may be configured to produce at least two reporter molecules via fragmentation. In some embodiments, one or more regions of the tag may comprise at least one heavy isotope. In some such embodiments, the ability to fragment into multiple reporter molecules as well as the placement and/or number of heavy isotope(s) allows the mass spectrometry tag to be distinguished from other similar mass spectrometry tags. In some such embodiments, the ability to distinguish between tags having the same or substantially similar total mass to charge ratio and reporter region mass may allow the system to have a greater multiplexing capacity than conventional systems.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: November 9, 2021
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Craig Braun, Wilhelm Haas, Steven P. Gygi, Gregory H. Bird, Loren D. Walensky, Martin Helmut Wuhr, Brian K. Erickson
  • Patent number: 11142554
    Abstract: Provided herein are stabilized peptides that bind Mcl-1. Also provided are compositions containing these polypeptides and methods of using such peptides in the treatment of cancer that include administering to a subject one of the polypeptides.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 12, 2021
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Dana-Farber Cancer Institute, Inc.
    Inventors: Raheleh Rezaei-Araghi, Amy Keating, Gregory H. Bird, Loren Walensky
  • Patent number: 11105810
    Abstract: In some embodiments, a mass spectrometry tag may comprise a linker region, a mass balance region, and a reporter region. The mass spectrometry tag may be configured to fragment in a mass spectrometer via an energy dependent process to produce multiple reporter molecules. For example, the reporter region of the tag may be configured to produce at least two reporter molecules via fragmentation. In some embodiments, one or more regions of the tag may comprise at least one heavy isotope. In some such embodiments, the ability to fragment into multiple reporter molecules as well as the placement and/or number of heavy isotope(s) allows the mass spectrometry tag to be distinguished from other similar mass spectrometry tags. In some such embodiments, the ability to distinguish between tags having the same or substantially similar total mass to charge ratio and reporter region mass may allow the system to have a greater multiplexing capacity than conventional systems.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 31, 2021
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Craig Braun, Wilhelm Haas, Steven P. Gygi, Gregory H. Bird, Loren D. Walensky, Martin Helmut Wuhr, Brian K. Erickson
  • Patent number: 11078246
    Abstract: This disclosure features stapled peptide inhibitors (e.g., cysteine-reactive stapled peptides) of the anti-apoptotic protein, BFL-1, and methods of using same in the treatment of BFL-1 expressing cancers.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 3, 2021
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Loren D. Walensky, Gregory H. Bird
  • Publication number: 20210070802
    Abstract: This disclosure features structurally-stabilized and/or cysteine-reactive peptide inhibitors for selective targeting of BFL-1, or dual targeting of BFL-1 and MCL-1. Also disclosed are methods of using such structurally-stabilized and cysteine-reactive peptides in the treatment of BFL-1- and/or MCL-1-expressing or -dependent cancers or diseases of cellular excess (e.g., autoimmune or inflammatory conditions). Also provided are combination therapies comprising such structurally-stabilized and/or cysteine-reactive peptides and inhibitors of the DNA damage response pathway, such as an ATM kinase inhibitor, ATR kinase inhibitor, CHK1/2 inhibitor, or PARP inhibitor; or an inhibitor of MCL-1, or a selective inhibitor of BCL-2, or an inhibitor of BCL-2/BCL-XL, for the treatment of BFL-1-expressing or -dependent cancers (e.g., AML), BFL-1 and MCL-1-expressing or -dependent cancers, or diseases of cellular excess (e.g., autoimmune or inflammatory conditions).
    Type: Application
    Filed: December 13, 2018
    Publication date: March 11, 2021
    Inventors: Loren D. Walensky, Gregory H. Bird, Rachel Guerra, Edward Harvey
  • Publication number: 20210002336
    Abstract: The invention provides structurally-constrained peptides by hydrocarbon stapling of a BCL9 HD2 helix for use as a therapeutic agent. The invention further provides methods and kits for use of the structurally-constrained peptide of the instant invention. The invention is based, at least in part, on the results provided herein demonstrating that hydrocarbon stapled helical peptides display excellent proteolytic, acid, and thermal stability, restore the native helical structure of the peptide, possess superior pharmacokinetic properties compared to the corresponding unmodified peptides, and are highly effective in binding to ?-catenin in vitro, in cellulo, and in vivo, disrupting the BCL-9/?-catenin interaction, and thereby interfering with deregulated Wnt/?-catenin signaling for therapeutic benefit in a variety of human diseases including human cancer.
    Type: Application
    Filed: May 18, 2020
    Publication date: January 7, 2021
    Applicant: DANA-FARBER CANCER INSTITUTE, INC.
    Inventors: Loren D. Walensky, Ruben Carrasco, Gregory H. Bird