Patents by Inventor Gregory K. Lilik

Gregory K. Lilik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11485922
    Abstract: Kerosene boiling range or jet fuel boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting kerosene boiling range fractions can have an unexpected combination of a high naphthenes to aromatics weight ratio, a low but substantial aromatics content, and a low sulfur content. Such fractions can potentially be used as fuel after a reduced or minimized amount of additional refinery processing. By reducing, minimizing, or avoiding the amount of refinery processing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: November 1, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Daniel E. Kadlecek, Randolph J. Smiley, Gregory K. Lilik, Mike T. Noorman, Shifang Luo, Ian J. Laurenzi, Poturovic Jasmina
  • Patent number: 11390820
    Abstract: Naphtha boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting naphtha boiling range fractions can have a high naphthenes to aromatics weight ratio, a low but substantial content of aromatics, and a low sulfur content. In some aspects, the fractions can be used as fuels and/or fuel blending products after fractionation with minimal further refinery processing. In other aspects, the amount of additional refinery processing, such as hydrotreatment, catalytic reforming and/or isomerization, can be reduced or minimized. By reducing, minimizing, or avoiding the amount of hydroprocessing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: July 19, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Matthew H. Lindner, Scott K. Berkhous, Mike T. Noorman, Gregory K. Lilik, Shifang Luo, Ian J. Laurenzi, Jasmina Poturovic
  • Publication number: 20210363448
    Abstract: Kerosene boiling range or jet fuel boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting kerosene boiling range fractions can have an unexpected combination of a high naphthenes to aromatics weight ratio, a low but substantial aromatics content, and a low sulfur content. Such fractions can potentially be used as fuel after a reduced or minimized amount of additional refinery processing. By reducing, minimizing, or avoiding the amount of refinery processing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Daniel E. Kadlecek, Randolph J. Smiley, Gregory K. Lilik, Mike T. Noorman, Shifang Luo, Ian J. Laurenzi, Poturovic Jasmina
  • Publication number: 20210363450
    Abstract: Naphtha boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting naphtha boiling range fractions can have a high naphthenes to aromatics weight ratio, a low but substantial content of aromatics, and a low sulfur content. In some aspects, the fractions can be used as fuels and/or fuel blending products after fractionation with minimal further refinery processing. In other aspects, the amount of additional refinery processing, such as hydrotreatment, catalytic reforming and/or isomerization, can be reduced or minimized. By reducing, minimizing, or avoiding the amount of hydroprocessing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Matthew H. Lindner, Scott K. Berkhous, Mike T. Noorman, Gregory K. Lilik, Shifang Luo, Ian J. Laurenzi, Jasmina Poturovic
  • Patent number: 10431022
    Abstract: A system for providing fuel type recommendations includes a mobile polling device communicatively coupled to one or more computing devices installed on-board of a vehicle for receiving vehicle's operational data from the on-board computing devices. The system further includes a cloud-based computing environment including a memory configured to store one or more processes and a processor adapted to execute the one or more processes using the cloud-based computing environment. The processor, when executing the one or more processes, is operable to receive vehicle's operational data from the mobile polling device. The processor is further operable to analyze the received vehicle's operational data to identify recommended fuel type and to provide one or more fuel type recommendations indicative of the recommended fuel type.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: October 1, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Leonard R. Koenig, Paul J. Berlowitz, Gregory K. Lilik
  • Patent number: 10365239
    Abstract: A system for in-situ identification of a working fluid disposed in at least one piece of equipment, the system including: a working fluid reservoir that contains the working fluid; an in-situ sensor disposed in the working fluid reservoir such that it detects properties of the working fluid or computes properties from the generated spectra of the working fluid; a transmitter that transmits the detected spectra of the working fluid and equipment identification information; and a cloud computing system that receives the detected spectra and the equipment identification information transmitted from the transmitter, wherein the cloud computing system compares the spectra and equipment identification information against a reference database to determine whether or not the spectra of the working fluid substantially matches the stored reference spectra associated with the expected or specified fluid for the equipment.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 30, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gregory K. Lilik, Spencer T. Stober, Alan M. Schilowitz, Michael L. Blumenfeld, Gary James Johnston, Samuel C. Bainbridge, Erik Herz
  • Publication number: 20180025278
    Abstract: A system for providing fuel location recommendations can include a vehicle data receiver configured to receive vehicle data from a vehicle computer, navigational system, and/or a vehicle operator, a fuel characteristic module configured to receive fuel properties of one or more fuel batches from a fuel property database, and a recommendation module configured to determine one or more recommended locations for refueling the vehicle based on received vehicle data from the vehicle data receiver and received fuel properties from the fuel property database.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 25, 2018
    Inventors: Gregory K. Lilik, Mike T. Noorman, Leonard R. Koenig
  • Publication number: 20170287237
    Abstract: A system for providing fuel type recommendations includes a mobile polling device communicatively coupled to one or more computing devices installed on-board of a vehicle for receiving vehicle's operational data from the on-board computing devices. The system further includes a cloud-based computing environment including a memory configured to store one or more processes and a processor adapted to execute the one or more processes using the cloud-based computing environment. The processor, when executing the one or more processes, is operable to receive vehicle's operational data from the mobile polling device. The processor is further operable to analyze the received vehicle's operational data to identify recommended fuel type and to provide one or more fuel type recommendations indicative of the recommended fuel type.
    Type: Application
    Filed: March 9, 2017
    Publication date: October 5, 2017
    Inventors: Leonard R. Koenig, Paul J. Berlowitz, Gregory K. Lilik
  • Publication number: 20170234819
    Abstract: A system for in-situ identification of a working fluid disposed in at least one piece of equipment, the system including: a working fluid reservoir that contains the working fluid; an in-situ sensor disposed in the working fluid reservoir such that it detects properties of the working fluid or computes properties from the generated spectra of the working fluid; a transmitter that transmits the detected spectra of the working fluid and equipment identification information; and a cloud computing system that receives the detected spectra and the equipment identification information transmitted from the transmitter, wherein the cloud computing system compares the spectra and equipment identification information against a reference database to determine whether or not the spectra of the working fluid substantially matches the stored reference spectra associated with the expected or specified fluid for the equipment.
    Type: Application
    Filed: January 23, 2017
    Publication date: August 17, 2017
    Inventors: Gregory K. Lilik, Spencer T. Stober, Alan M. Schilowitz, Michael L. Blumenfeld, Gary James Johnston, Samuel C. Bainbridge, Erik Herz